1,835 research outputs found
Nilpotent classical mechanics: s-geometry
We introduce specific type of hyperbolic spaces. It is not a general linear
covariant object, but of use in constructing nilpotent systems. In the present
work necessary definitions and relevant properties of configuration and phase
spaces are indicated. As a working example we use a D=2 isotropic harmonic
oscillator.Comment: 8 pages, presented at QGIS, June 2006, Pragu
Delta rho pi interaction leading to N* and Delta* resonances
We have performed a calculation for the three body system
by using the fixed center approximation to Faddeev equations, taking the
interaction between and , and, and and
from the chiral unitary approach. We find several peaks in the modulus
squared of the three-body scattering amplitude, indicating the existence of
resonances, which can be associated to known and and baryon states.Comment: Presented at the 21st European Conference on Few-Body Problems in
Physics, Salamanca, Spain, 30 August - 3 September 201
Radiative corrections to all charge assignments of heavy quark baryon semileptonic decays
In semileptonic decays of spin-1/2 baryons containing heavy quarks up to six
charge assignments for the baryons and lepton are possible. We show that the
radiative corrections to four of these possibilities can be directly obtained
from the final results of the two possibilities previously studied. There is no
need to recalculate integrals over virtual or real photon momentum or any
traces.Comment: 15 pages, 2 figures, RevTex. Extended discussion. Final version to
appear in Physical Review
Generation of synthetic data with generative adversarial networks
The aim of synthetic data generation is to provide data that is not real for cases where the use of real data is somehow limited. For example, when there is a need for larger volumes of data, when the data is sensitive to use, or simply when it is hard to get access to the real data. Traditional methods of synthetic data generation use techniques that do not intend to replicate important statistical properties of the original data. Properties such as the distribution, the patterns or the correlation between variables, are often omitted. Moreover, most of the existing tools and approaches require a great deal of user-defined rules and do not make use of advanced techniques like Machine Learning or Deep Learning. While Machine Learning is an innovative area of Artificial Intelligence and Computer Science that uses statistical techniques to give computers the ability to learn from data, Deep Learning is a closely related field based on learning data representations, which may serve useful for the task of synthetic data generation. This thesis focuses on one of the most interesting and promising innovations of the last years in the Machine Learning community: Generative Adversarial Networks. An approach for generating discrete, continuous or text synthetic data with Generative Adversarial Networks is proposed, tested, evaluated and compared with a baseline approach. The results prove the feasibility and show the advantages and disadvantages of using this framework. Despite its high demand for computational resources, a Generative Adversarial Networks framework is capable of generating quality synthetic data that preserves the statistical properties of a given dataset.Syftet med syntetisk datagenerering är att tillhandahålla data som inte är verkliga i fall där användningen av reella data på något sätt är begränsad. Till exempel, när det finns behov av större datamängder, när data är känsliga för användning, eller helt enkelt när det är svårt att få tillgång till den verkliga data. Traditionella metoder för syntetiska datagenererande använder tekniker som inte avser att replikera viktiga statistiska egenskaper hos de ursprungliga data. Egenskaper som fördelningen, mönstren eller korrelationen mellan variabler utelämnas ofta. Dessutom kräver de flesta av de befintliga verktygen och metoderna en hel del användardefinierade regler och använder inte avancerade tekniker som Machine Learning eller Deep Learning. Machine Learning är ett innovativt område för artificiell intelligens och datavetenskap som använder statistiska tekniker för att ge datorer möjlighet att lära av data. Deep Learning ett närbesläktat fält baserat på inlärningsdatapresentationer, vilket kan vara användbart för att generera syntetisk data. Denna avhandling fokuserar på en av de mest intressanta och lovande innovationerna från de senaste åren i Machine Learning-samhället: Generative Adversarial Networks. Generative Adversarial Networks är ett tillvägagångssätt för att generera diskret, kontinuerlig eller textsyntetisk data som föreslås, testas, utvärderas och jämförs med en baslinjemetod. Resultaten visar genomförbarheten och visar fördelarna och nackdelarna med att använda denna metod. Trots dess stora efterfrågan på beräkningsresurser kan ett generativt adversarialnätverk skapa generell syntetisk data som bevarar de statistiska egenskaperna hos ett visst dataset
Magnetic phenomena in 5d transition metal nanowires
We have carried out fully relativistic full-potential, spin-polarized,
all-electron density-functional calculations for straight, monatomic nanowires
of the 5d transition and noble metals Os, Ir, Pt and Au. We find that, of these
metal nanowires, Os and Pt have mean-field magnetic moments for values of the
bond length at equilibrium. In the case of Au and Ir, the wires need to be
slightly stretched in order to spin polarize. An analysis of the band
structures of the wires indicate that the superparamagnetic state that our
calculations suggest will affect the conductance through the wires -- though
not by a large amount -- at least in the absence of magnetic domain walls. It
should thus lead to a characteristic temperature- and field dependent
conductance, and may also cause a significant spin polarization of the
transmitted current.Comment: 7 pages, 5 figure
Study of the , , and in the radiative decays
In this paper we present an approach to study the radiative decay modes of
the into a photon and one of the tensor mesons ,
, as well as the scalar ones and .
Especially we compare predictions that emerge from a scheme where the states
appear dynamically in the solution of vector meson--vector meson scattering
amplitudes to those from a (admittedly naive) quark model. We provide evidence
that it might be possible to distinguish amongst the two scenarios, once
improved data are available.Comment: The large Nc argument improved; version published in EPJA
New molecular approaches in adipogenesis regulation: The connexin 43 role
Indexación: Scopus; Redalyc.La prevalencia de la obesidad a nivel mundial se ha incrementado
rápidamente durante los últimos años debido principalmente
a los cambios en el estilo de vida de la población
con un aumento significativo en el consumo de energía y disminución
de los niveles de actividad física. Es por esto que
la comunidad científica está interesada en comprender de
forma más profunda los mecanismos que regulan la fisiopatología
de la obesidad. Dentro de los diferentes blancos de
estudio se encuentra la adipogénesis, cuyo entendimiento es
fundamental para comprender el desarrollo de la obesidad y
las patologías asociadas a esta. Recientemente ha surgido
importantes evidencias que involucran a la proteína de canales
de “Gap Junction” conexina 43 (Cx43) en la regulación
de los procesos relacionados con adipogénesis, cuyo papel
es básicamente anti-adipogénico, sin embargo, nuevas funciones
de Cx43 en la regulación de la formación del tejido
adiposo siguen descubriéndose.The global prevalence of obesity has been increased rapidly
over the past few years mainly due to changes in the lifestyle
of the population with a significant increase in energy
consumption and decreased levels of physical activity. As a
result, the scientific community is interested in a deeper understanding
of the mechanisms that regulate the pathophysiology
of obesity. In this context, adipogenesis process is an
important target of study to understand the obesity and associated
pathologies. Recently has been emerged important
evidence that involve gap junction channel protein connexin
43 (Cx43) in the regulation of processes related to adipogenesis,
whose role is fundamentally anti-adipogenic. However,
new functions of Cx43 in the regulation of adipose tissue
function also continued to emerge.http://www.redalyc.org/articulo.oa?id=5594990800
FTO gene: Historic background and its relationship with chronic-degenerative diseases
Indexación: Scopus; Latindex.Alteraciones en el desarrollo de la atención
y la organización conductual pueden
configurar cuadros clínicos como
el trastorno déficit de atención (TDA) que puede estar
acompañado o no de hiperactividad (TDAH), este último
parece tener una relación directa con otros diagnósticos
de tipo endocrino como la obesidad. El objetivo del estudio
es analizar la relación que existe entre el TDAH y la
obesidad. Es por ello que se realiza una revisión sistemática
de estudios científicos revelando relaciones y diferencias
entre ambos trastornos desde una mirada fisiológica,
cognoscitiva y comportamental. Se concluye que la relación
entre el TDAH y la obesidad se da por factores genéticos,
por variaciones dopaminérgicas, cambios en patrones
de sueño, desajustes emocionales y por alteraciones en la
regulación de la conducta; igualmente influyen factores
sociales relacionados con el cuidado en el embarazo y la
alimentación de las mujeres antes y durante la gestación.http://www.revhipertension.com/rlh_2_2018/5_fto_gene.pd
flavour tagging using charm decays at the LHCb experiment
An algorithm is described for tagging the flavour content at production of
neutral mesons in the LHCb experiment. The algorithm exploits the
correlation of the flavour of a meson with the charge of a reconstructed
secondary charm hadron from the decay of the other hadron produced in the
proton-proton collision. Charm hadron candidates are identified in a number of
fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is
calibrated on the self-tagged decay modes and using of data collected by the LHCb
experiment at centre-of-mass energies of and
. Its tagging power on these samples of
decays is .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …
