488 research outputs found
A Cross-Sectional Study of People with Epilepsy and Neurocysticercosis in Tanzania: Clinical Characteristics and Diagnostic Approaches.
Neurocysticercosis (NCC) is a major cause of epilepsy in regions where pigs are free-ranging and hygiene is poor. Pork production is expected to increase in the next decade in sub-Saharan Africa, hence NCC will likely become more prevalent. In this study, people with epilepsy (PWE, n=212) were followed up 28.6 months after diagnosis of epilepsy. CT scans were performed, and serum and cerebrospinal fluid (CSF) of selected PWE were analysed. We compared the demographic data, clinical characteristics, and associated risk factors of PWE with and without NCC. PWE with NCC (n=35) were more likely to be older at first seizure (24.3 vs. 16.3 years, p=0.097), consumed more pork (97.1% vs. 73.6%, p=0.001), and were more often a member of the Iraqw tribe (94.3% vs. 67.8%, p=0.005) than PWE without NCC (n=177). PWE and NCC who were compliant with anti-epileptic medications had a significantly higher reduction of seizures (98.6% vs. 89.2%, p=0.046). Other characteristics such as gender, seizure frequency, compliance, past medical history, close contact with pigs, use of latrines and family history of seizures did not differ significantly between the two groups. The number of NCC lesions and active NCC lesions were significantly associated with a positive antibody result. The electroimmunotransfer blot, developed by the Centers for Disease Control and Prevention, was more sensitive than a commercial western blot, especially in PWE and cerebral calcifications. This is the first study to systematically compare the clinical characteristics of PWE due to NCC or other causes and to explore the utility of two different antibody tests for diagnosis of NCC in sub-Saharan Africa
Isospin influences on particle emission and critical phenomenon in nuclear dissociation
Features of particle emission and critical point behavior are investigated as
functions of the isospin of disassembling sources and temperature at a moderate
freeze-out density for medium-size Xe isotopes in the framework of isospin
dependent lattice gas model. Multiplicities of emitted light particles,
isotopic and isobaric ratios of light particles show the strong dependence on
the isospin of the dissociation source, but double ratios of light isotope
pairs and the critical temperature determined by the extreme values of some
critical observables are insensitive to the isospin of the systems. Values of
the power law parameter of cluster mass distribution, mean multiplicity of
intermediate mass fragments (), information entropy () and Campi's
second moment () also show a minor dependence on the isospin of Xe
isotopes at the critical point. In addition, the slopes of the average
multiplicites of the neutrons (), protons (), charged particles
(), and IMFs (), slopes of the largest fragment mass number
(), and the excitation energy per nucleon of the disassembling source
() to temperature are investigated as well as variances of the
distributions of , , , , and . It
is found that they can be taken as additional judgements to the critical
phenomena.Comment: 9 Pages, 8 figure
Recommendations for a core outcome set for measuring standing balance in adult populations: a consensus-based approach
Standing balance is imperative for mobility and avoiding falls. Use of an excessive number of standing balance measures has limited the synthesis of balance intervention data and hampered consistent clinical practice.To develop recommendations for a core outcome set (COS) of standing balance measures for research and practice among adults.A combination of scoping reviews, literature appraisal, anonymous voting and face-to-face meetings with fourteen invited experts from a range of disciplines with international recognition in balance measurement and falls prevention. Consensus was sought over three rounds using pre-established criteria.The scoping review identified 56 existing standing balance measures validated in adult populations with evidence of use in the past five years, and these were considered for inclusion in the COS.Fifteen measures were excluded after the first round of scoring and a further 36 after round two. Five measures were considered in round three. Two measures reached consensus for recommendation, and the expert panel recommended that at a minimum, either the Berg Balance Scale or Mini Balance Evaluation Systems Test be used when measuring standing balance in adult populations.Inclusion of two measures in the COS may increase the feasibility of potential uptake, but poses challenges for data synthesis. Adoption of the standing balance COS does not constitute a comprehensive balance assessment for any population, and users should include additional validated measures as appropriate.The absence of a gold standard for measuring standing balance has contributed to the proliferation of outcome measures. These recommendations represent an important first step towards greater standardization in the assessment and measurement of this critical skill and will inform clinical research and practice internationally
The impact of venture capital on governance decisions in collaborations with start-ups
This article addresses solutions for contractual hazards in the formation and operation of collaborations with start-ups. We suggest that venture capitalists may serve as a mechanism to mitigate contractual hazards and act as a substitute for equity sharing in joint ventures. This article is to our knowledge the first to address the impact of venture capital (VC) on governance decisions for start-ups. We analyze 5405 bilateral collaborations from the SDC database for the period 2009-2014, and find that VC-backed firms are less likely to share equity in collaborations
Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development.
Cardiac development arises from two sources of mesoderm progenitors, the first heart field (FHF) and the second (SHF). Mesp1 has been proposed to mark the most primitive multipotent cardiac progenitors common for both heart fields. Here, using clonal analysis of the earliest prospective cardiovascular progenitors in a temporally controlled manner during early gastrulation, we found that Mesp1 progenitors consist of two temporally distinct pools of progenitors restricted to either the FHF or the SHF. FHF progenitors were unipotent, whereas SHF progenitors were either unipotent or bipotent. Microarray and single-cell PCR with reverse transcription analysis of Mesp1 progenitors revealed the existence of molecularly distinct populations of Mesp1 progenitors, consistent with their lineage and regional contribution. Together, these results provide evidence that heart development arises from distinct populations of unipotent and bipotent cardiac progenitors that independently express Mesp1 at different time points during their specification, revealing that the regional segregation and lineage restriction of cardiac progenitors occur very early during gastrulation.This is the author's accepted manuscript and will be under embargo until the 24th of February 2015. The final version is published by NPG in Nature Cell Biology here: http://www.nature.com/ncb/journal/v16/n9/full/ncb3024.html
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Pioglitazone, a PPAR-γ Activator, Stimulates BKCa but Suppresses IKM in Hippocampal Neurons
Pioglitazone (PIO), a thiazolidinedone, was reported to stimulate peroxisome proliferator-activated receptor-γ (PPAR-γ) with anti-inflammatory, anti-proliferative, anti-diabetic, and antidepressive activities. However, whether this compound exerts any perturbations on Ca2+-activated K+ and M-type K+ currents in central neurons remains largely unresolved. In this study, we investigated the effects of PIO on these potassium currents in hippocampal neurons (mHippoE-14). In whole-cell current recordings, the presence of PIO (10 μM) increased the amplitude of Ca2+-activated K+ current [IK(Ca)] in mHippoE-14 cells. PIO-induced stimulation of IK(Ca) observed in these cells was reversed by subsequent addition of paxilline, yet not by TRAM-39 or apamin. In inside-out current recordings, PIO applied to the bath concentration-dependently increased the activity of large-conductance Ca2+-activated K+ (BKCa) channels with an EC50 value of 7.6 μM. Its activation of BKCa channels in mHippoE-14 cells was voltage-dependent and accompanied by both a lengthening in mean open time and a shortening in slow component of mean closed time. The activation curve of BKCa channels after addition of PIO was shifted to less depolarized potential without any change in the gating charge. PIO also suppressed the amplitude of M-type K+ currents inherently in mHippoE-14 neurons. Taken together, in addition to its agonistic action on PPAR-γ, PIO-induced perturbation of these potassium channels may be responsible for its widely pharmacological actions on hippocampal neurons
Quantification and recognition of parkinsonian gait from monocular video imaging using kernel-based principal component analysis
<p>Abstract</p> <p>Background</p> <p>The computer-aided identification of specific gait patterns is an important issue in the assessment of Parkinson's disease (PD). In this study, a computer vision-based gait analysis approach is developed to assist the clinical assessments of PD with kernel-based principal component analysis (KPCA).</p> <p>Method</p> <p>Twelve PD patients and twelve healthy adults with no neurological history or motor disorders within the past six months were recruited and separated according to their "Non-PD", "Drug-On", and "Drug-Off" states. The participants were asked to wear light-colored clothing and perform three walking trials through a corridor decorated with a navy curtain at their natural pace. The participants' gait performance during the steady-state walking period was captured by a digital camera for gait analysis. The collected walking image frames were then transformed into binary silhouettes for noise reduction and compression. Using the developed KPCA-based method, the features within the binary silhouettes can be extracted to quantitatively determine the gait cycle time, stride length, walking velocity, and cadence.</p> <p>Results and Discussion</p> <p>The KPCA-based method uses a feature-extraction approach, which was verified to be more effective than traditional image area and principal component analysis (PCA) approaches in classifying "Non-PD" controls and "Drug-Off/On" PD patients. Encouragingly, this method has a high accuracy rate, 80.51%, for recognizing different gaits. Quantitative gait parameters are obtained, and the power spectrums of the patients' gaits are analyzed. We show that that the slow and irregular actions of PD patients during walking tend to transfer some of the power from the main lobe frequency to a lower frequency band. Our results indicate the feasibility of using gait performance to evaluate the motor function of patients with PD.</p> <p>Conclusion</p> <p>This KPCA-based method requires only a digital camera and a decorated corridor setup. The ease of use and installation of the current method provides clinicians and researchers a low cost solution to monitor the progression of and the treatment to PD. In summary, the proposed method provides an alternative to perform gait analysis for patients with PD.</p
- …
