217 research outputs found

    Scale Dependence of the Halo Bias in General Local-Type Non-Gaussian Models I: Analytical Predictions and Consistency Relations

    Full text link
    We investigate the clustering of halos in cosmological models starting with general local-type non-Gaussian primordial fluctuations. We employ multiple Gaussian fields and add local-type non-Gaussian corrections at arbitrary order to cover a class of models described by frequently-discussed f_nl, g_nl and \tau_nl parameterization. We derive a general formula for the halo power spectrum based on the peak-background split formalism. The resultant spectrum is characterized by only two parameters responsible for the scale-dependent bias at large scale arising from the primordial non-Gaussianities in addition to the Gaussian bias factor. We introduce a new inequality for testing non-Gaussianities originating from multi fields, which is directly accessible from the observed power spectrum. We show that this inequality is a generalization of the Suyama-Yamaguchi inequality between f_nl and \tau_nl to the primordial non-Gaussianities at arbitrary order. We also show that the amplitude of the scale-dependent bias is useful to distinguish the simplest quadratic non-Gaussianities (i.e., f_nl-type) from higher-order ones (g_nl and higher), if one measures it from multiple species of galaxies or clusters of galaxies. We discuss the validity and limitations of our analytic results by comparison with numerical simulations in an accompanying paper.Comment: 25 pages, 3 figures, typo corrected, Appendix C updated, submitted to JCA

    2-loop Quantum Yang-Mills Condensate as Dark Energy

    Full text link
    In seeking a model solving the coincidence problem, the effective Yang-Mills condensate (YMC) is an alternative candidate for dark energy. A study is made for the model up to the 2-loop order of quantum corrections. It is found that, like in the 1-loop model, for generic initial conditions during the radiation era, there is always a desired tracking solution, yielding the current status ΩΛ0.73\Omega_\Lambda \simeq 0.73 and Ωm0.27\Omega_m \simeq 0.27. As the time tt\to \infty the dynamics is a stable attractor. Thus the model naturally solves the coincidence problem of dark energy. Moreover, if YMC decays into matter, its equation of state (EoS) crosses -1 and takes w1.1w\sim -1.1, as indicated by the recent observations.Comment: 9 pages, 4 figures. Phys. Lett. B accepte

    Entropy-Corrected New Agegraphic Dark Energy Model in Horava-Lifshitz Gravity

    Full text link
    In this work, we have considered the entropy-corrected new agegraphic dark energy (ECNADE) model in Horava-Lifshitz gravity in FRW universe. We have discussed the correspondence between ECNADE and other dark energy models such as DBI-essence,Yang-Mills dark energy, Chameleon field, Non-linear electrodynamics field and hessence dark energy in the context of Horava-Lifshitz gravity and reconstructed the potentials and the dynamics of the scalar field theory which describe the ECNADE.Comment: 12 page

    Early and Late-time Cosmic Acceleration in Non-minimal Yang-Mills-f(G)f(G) Gravity

    Full text link
    In this paper we show that power-law inflation can be realized in non-minimal gravitational coupling of Yang-Mills field with a general function of the Gauss-Bonnet invariant in the framework of Einstein gravity. Such a non-minimal coupling may appear due to quantum corrections. We also discuss the non-minimal Yang-Mills-f(G)f(G) gravity in the framework of modified Gauss-Bonnet action which is widely studied recently. It is shown that both inflation and late-time cosmic acceleration are possible in such a theory.Comment: 13 pages, no figures, v2 references added, Minor typos correcte

    Prunella vulgaris: A comprehensive review of chemical constituents, pharmacological effects and clinical applications.

    Get PDF
    Prunella vulgaris (PV) is a perennial herb belonging to the Labiate family and is widely distributed in northeastern Asian countries such as Korea, Japan, and China. It is reported to display diverse biological activities including anti-microbial, anti-cancer, and anti-inflammation as determined by in vitro or in vivo studies. So far, about 200 compounds have been isolated from PV plant and majority of these have been characterized mainly as triterpenoids, sterols and flavonoids, followed by coumarins, phenylpropanoids, polysaccharides and volatile oils. This review summarizes and analyzes the current knowledge on the chemical constituents, pharmacological activities, mechanisms of action and clinical applications of the PV plant including its potential as a future medicinal plant. Although some of the chemical constituents of the PV plant and their mechanism of action have been investigated the biological activities of many of these remain unknown and further clinical trials are required to further enhance its reputation as a medicinal plant

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Search for neutral resonances decaying into a Z boson and a pair of b jets or τ leptons

    Get PDF
    A search is performed for a new resonance decaying into a lighter resonance and a Z boson. Two channels are studied, targeting the decay of the lighter resonance into either a pair of oppositely charged τ leptons or a bb‾ pair. The Z boson is identified via its decays to electrons or muons. The search exploits data collected by the CMS experiment at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.8 fb −1 . No significant deviations are observed from the standard model expectation and limits are set on production cross sections and parameters of two-Higgs-doublet models
    corecore