1,671 research outputs found

    Polymeric Nanoparticle PET/MR Imaging Allows Macrophage Detection in Atherosclerotic Plaques

    Get PDF
    Author Manuscript 2013 March 02.Rationale: Myeloid cell content in atherosclerotic plaques associates with rupture and thrombosis. Thus, imaging of lesional monocytes and macrophages could serve as a biomarker of disease progression and therapeutic intervention. Objective: To noninvasively assess plaque inflammation with dextran nanoparticle (DNP)-facilitated hybrid positron emission tomography/magnetic resonance imaging (PET/MRI). Methods and Results: Using clinically approved building blocks, we systematically developed 13-nm polymeric nanoparticles consisting of cross-linked short chain dextrans, which were modified with desferoxamine for zirconium-89 radiolabeling ([superscript 89]Zr-DNP) and a near-infrared fluorochrome (VT680) for microscopic and cellular validation. Flow cytometry of cells isolated from excised aortas showed DNP uptake predominantly in monocytes and macrophages (76.7%) and lower signal originating from other leukocytes, such as neutrophils and lymphocytes (11.8% and 0.7%, P<0.05 versus monocytes and macrophages). DNP colocalized with the myeloid cell marker CD11b on immunohistochemistry. PET/MRI revealed high uptake of [superscript 89]Zr-DNP in the aortic root of apolipoprotein E knock out (ApoE[superscript −/−]) mice (standard uptake value, ApoE[superscript −/−] mice versus wild-type controls, 1.9±0.28 versus 1.3±0.03; P<0.05), corroborated by ex vivo scintillation counting and autoradiography. Therapeutic silencing of the monocyte-recruiting receptor C-C chemokine receptor type 2 with short-interfering RNA decreased [superscript 89]Zr-DNP plaque signal (P<0.05) and inflammatory gene expression (P<0.05). Conclusions: Hybrid PET/MRI with a 13-nm DNP enables noninvasive assessment of inflammation in experimental atherosclerotic plaques and reports on therapeutic efficacy of anti-inflammatory therapy.National Heart, Lung, and Blood InstituteNational Institutes of Health (U.S.). Dept. of Health and Human Services (HHSN268201000044C)National Institutes of Health (U.S.). Dept. of Health and Human Services (R01-HL096576)National Institutes of Health (U.S.). Dept. of Health and Human Services (R01-HL095629)National Institutes of Health (U.S.). Dept. of Health and Human Services (T32-HL094301

    Monocyte Subset Dynamics in Human Atherosclerosis Can Be Profiled with Magnetic Nano-Sensors

    Get PDF
    Monocytes are circulating macrophage and dendritic cell precursors that populate healthy and diseased tissue. In humans, monocytes consist of at least two subsets whose proportions in the blood fluctuate in response to coronary artery disease, sepsis, and viral infection. Animal studies have shown that specific shifts in the monocyte subset repertoire either exacerbate or attenuate disease, suggesting a role for monocyte subsets as biomarkers and therapeutic targets. Assays are therefore needed that can selectively and rapidly enumerate monocytes and their subsets. This study shows that two major human monocyte subsets express similar levels of the receptor for macrophage colony stimulating factor (MCSFR) but differ in their phagocytic capacity. We exploit these properties and custom-engineer magnetic nanoparticles for ex vivo sensing of monocytes and their subsets. We present a two-dimensional enumerative mathematical model that simultaneously reports number and proportion of monocyte subsets in a small volume of human blood. Using a recently described diagnostic magnetic resonance (DMR) chip with 1 µl sample size and high throughput capabilities, we then show that application of the model accurately quantifies subset fluctuations that occur in patients with atherosclerosis

    Monocyte-Directed RNAi Targeting CCR2 Improves Infarct Healing in Atherosclerosis-Prone Mice

    Get PDF
    Background—Exaggerated and prolonged inflammation after myocardial infarction (MI) accelerates left ventricular remodeling. Inflammatory pathways may present a therapeutic target to prevent post-MI heart failure. However, the appropriate magnitude and timing of interventions are largely unknown, in part because noninvasive monitoring tools are lacking. Here, we used nanoparticle-facilitated silencing of CCR2, the chemokine receptor that governs inflammatory Ly-6Chigh monocyte subset traffic, to reduce infarct inflammation in apolipoprotein E–deficient (apoE−/−) mice after MI. We used dual-target positron emission tomography/magnetic resonance imaging of transglutaminase factor XIII (FXIII) and myeloperoxidase (MPO) activity to monitor how monocyte subset–targeted RNAi altered infarct inflammation and healing. Methods and Results—Flow cytometry, gene expression analysis, and histology revealed reduced monocyte numbers and enhanced resolution of inflammation in infarcted hearts of apoE−/− mice that were treated with nanoparticle-encapsulated siRNA. To follow extracellular matrix cross-linking noninvasively, we developed a fluorine-18–labeled positron emission tomography agent (18F-FXIII). Recruitment of MPO-rich inflammatory leukocytes was imaged with a molecular magnetic resonance imaging sensor of MPO activity (MPO-Gd). Positron emission tomography/magnetic resonance imaging detected anti-inflammatory effects of intravenous nanoparticle-facilitated siRNA therapy (75% decrease of MPO-Gd signal; P<0.05), whereas 18F-FXIII positron emission tomography reflected unimpeded matrix cross-linking in the infarct. Silencing of CCR2 during the first week after MI improved ejection fraction on day 21 after MI from 29% to 35% (P<0.05). Conclusion—CCR2-targeted RNAi reduced recruitment of Ly-6Chigh monocytes, attenuated infarct inflammation, and curbed post-MI left ventricular remodeling.National Heart, Lung, and Blood InstituteUnited States. Dept. of Health and Human Services (contract No. HHSN268201000044C)National Institutes of Health (U.S.) (grant R01-HL096576)National Institutes of Health (U.S.) (grant R01-HL095629)National Institutes of Health (U.S.) (grant T32-HL094301)Deutsche Forschungsgemeinschaft (HE-6382/1-1

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Modeling Susceptibility versus Resistance in Allergic Airway Disease Reveals Regulation by Tec Kinase Itk

    Get PDF
    Murine models of allergic asthma have been used to understand the mechanisms of development and pathology in this disease. In addition, knockout mice have contributed significantly to our understanding of the roles of specific molecules and cytokines in these models. However, results can vary significantly depending on the mouse strain used in the model, and in particularly in understanding the effect of specific knockouts. For example, it can be equivocal as to whether specific gene knockouts affect the susceptibility of the mice to developing the disease, or lead to resistance. Here we used a house dust mite model of allergic airway inflammation to examine the response of two strains of mice (C57BL/6 and BALB/c) which differ in their responses in allergic airway inflammation. We demonstrate an algorithm that can facilitate the understanding of the behavior of these models with regards to susceptibility (to allergic airway inflammation) (Saai) or resistance (Raai) in this model. We verify that both C57BL/6 and BALB/c develop disease, but BALB/c mice have higher Saai for development. We then use this approach to show that the absence of the Tec family kinase Itk, which regulates the production of Th2 cytokines, leads to Raai in the C57BL/6 background, but decreases Saai on the BALB/c background. We suggest that the use of such approaches could clarify the behavior of various knockout mice in modeling allergic asthma

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore