76 research outputs found

    Environment Dictates Dependence on Mitochondrial Complex I for NAD+ and Aspartate Production and Determines Cancer Cell Sensitivity to Metformin

    Get PDF
    Metformin use is associated with reduced cancer mortality, but how metformin impacts cancer outcomes is controversial. Although metformin can act on cells autonomously to inhibit tumor growth, the doses of metformin that inhibit proliferation in tissue culture are much higher than what has been described in vivo. Here, we show that the environment drastically alters sensitivity to metformin and other complex I inhibitors. We find that complex I supports proliferation by regenerating nicotinamide adenine dinucleotide (NAD)+, and metformin's anti-proliferative effect is due to loss of NAD+/NADH homeostasis and inhibition of aspartate biosynthesis. However, complex I is only one of many inputs that determines the cellular NAD+/NADH ratio, and dependency on complex I is dictated by the activity of other pathways that affect NAD+ regeneration and aspartate levels. This suggests that cancer drug sensitivity and resistance are not intrinsic properties of cancer cells, and demonstrates that the environment can dictate sensitivity to therapies that impact cell metabolism. Keywords: cancer metabolism; metformin; biguanide; NAD+/NADH ratio; drug sensitivity; complex I; mitochondria; aspartateNational Institutes of Health (U.S.) (Grant P30CA1405141)National Institutes of Health (U.S.) (Grant GG006413)National Institutes of Health (U.S.) (Grant R01 CA168653)National Institutes of Health (U.S.) (Grant R01 CA201276

    Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer

    Get PDF
    Cultured cells convert glucose to lactate, and glutamine is the major source of tricarboxylic acid (TCA)-cycle carbon, but whether the same metabolic phenotype is found in tumors is less studied. We infused mice with lung cancers with isotope-labeled glucose or glutamine and compared the fate of these nutrients in tumor and normal tissue. As expected, lung tumors exhibit increased lactate production from glucose. However, glutamine utilization by both lung tumors and normal lung was minimal, with lung tumors showing increased glucose contribution to the TCA cycle relative to normal lung tissue. Deletion of enzymes involved in glucose oxidation demonstrates that glucose carbon contribution to the TCA cycle is required for tumor formation. These data suggest that understanding nutrient utilization by tumors can predict metabolic dependencies of cancers in vivo. Furthermore, these data argue that the in vivo environment is an important determinant of the metabolic phenotype of cancer cells.National Science Foundation (U.S.) (Grant T32GM007287

    EGLN1 Inhibition and Rerouting of α-Ketoglutarate Suffice for Remote Ischemic Protection

    Get PDF
    Ischemic preconditioning is the phenomenon whereby brief periods of sublethal ischemia protect against a subsequent, more prolonged, ischemic insult. In remote ischemic preconditioning (RIPC), ischemia to one organ protects others organs at a distance. We created mouse models to ask if inhibition of the alpha-ketoglutarate (αKG)-dependent dioxygenase Egln1, which senses oxygen and regulates the hypoxia-inducible factor (HIF) transcription factor, could suffice to mediate local and remote ischemic preconditioning. Using somatic gene deletion and a pharmacological inhibitor, we found that inhibiting Egln1 systemically or in skeletal muscles protects mice against myocardial ischemia-reperfusion (I/R) injury. Parabiosis experiments confirmed that RIPC in this latter model was mediated by a secreted factor. Egln1 loss causes accumulation of circulating αKG, which drives hepatic production and secretion of kynurenic acid (KYNA) that is necessary and sufficient to mediate cardiac ischemic protection in this setting.Broad Institute of MIT and Harvard. SPARC ProgramBurroughs Wellcome Fun

    A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate

    Get PDF
    Serine is a both a proteinogenic amino acid and the source of one-carbon units essential for de novo purine and deoxythymidine synthesis. In the canonical glucose-derived serine synthesis pathway, Homo sapiens phosphoglycerate dehydrogenase (PHGDH) catalyzes the first, ratelimiting step. Genetic loss of PHGDH is toxic towards PHGDH-overexpressing breast cancer cell lines even in the presence of exogenous serine. Here, we use a quantitative high-throughput screen to identify small molecule PHGDH inhibitors. These compounds reduce the production of glucose-derived serine in cells and suppress the growth of PHGDH-dependent cancer cells in culture and in orthotopic xenograft tumors. Surprisingly, PHGDH inhibition reduced the incorporation into nucleotides of one-carbon units from glucose-derived and exogenous serine. We conclude that glycolytic serine synthesis coordinates the use of one-carbon units from endogenous and exogenous serine in nucleotide synthesis, and suggest that one-carbon unit wasting may contribute to the efficacy of PHGDH inhibitors in vitro and in vivo.Damon Runyon Cancer Research Foundation (Sally Gordon Fellowship DRG-112-12)United States. Dept. of Defense. Breast Cancer Research Program (Postdoctoral Fellowship BC120208)American Society for Radiation Oncology (Resident Seed Grant RA-2011-1)European Molecular Biology Organization (Long-Term Fellowship)National Institutes of Health (U.S.) (R03 DA034602-01A1, R01 CA129105, R01 CA103866, and R37 AI047389)United States. Department of Defense (W81XWH-14-PRCRP-IA)Alexander and Margaret Stewart Trus

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Cabotegravir for HIV Prevention in Cisgender Men and Transgender Women

    Get PDF
    Background: Safe and effective long-acting injectable agents for preexposure prophylaxis (PrEP) for human immunodeficiency virus (HIV) infection are needed to increase the options for preventing HIV infection. Methods: We conducted a randomized, double-blind, double-dummy, noninferiority trial to compare long-acting injectable cabotegravir (CAB-LA, an integrase strand-transfer inhibitor [INSTI]) at a dose of 600 mg, given intramuscularly every 8 weeks, with daily oral tenofovir disoproxil fumarate-emtricitabine (TDF-FTC) for the prevention of HIV infection in at-risk cisgender men who have sex with men (MSM) and in at-risk transgender women who have sex with men. Participants were randomly assigned (1:1) to receive one of the two regimens and were followed for 153 weeks. HIV testing and safety evaluations were performed. The primary end point was incident HIV infection. Results: The intention-to-treat population included 4566 participants who underwent randomization; 570 (12.5%) identified as transgender women, and the median age was 26 years (interquartile range, 22 to 32). The trial was stopped early for efficacy on review of the results of the first preplanned interim end-point analysis. Among 1698 participants from the United States, 845 (49.8%) identified as Black. Incident HIV infection occurred in 52 participants: 13 in the cabotegravir group (incidence, 0.41 per 100 person-years) and 39 in the TDF-FTC group (incidence, 1.22 per 100 person-years) (hazard ratio, 0.34; 95% confidence interval, 0.18 to 0.62). The effect was consistent across prespecified subgroups. Injection-site reactions were reported in 81.4% of the participants in the cabotegravir group and in 31.3% of those in the TDF-FTC group. In the participants in whom HIV infection was diagnosed after exposure to CAB-LA, INSTI resistance and delays in the detection of HIV infection were noted. No safety concerns were identified. Conclusions: CAB-LA was superior to daily oral TDF-FTC in preventing HIV infection among MSM and transgender women. Strategies are needed to prevent INSTI resistance in cases of CAB-LA PrEP failure

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
    corecore