research

A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate

Abstract

Serine is a both a proteinogenic amino acid and the source of one-carbon units essential for de novo purine and deoxythymidine synthesis. In the canonical glucose-derived serine synthesis pathway, Homo sapiens phosphoglycerate dehydrogenase (PHGDH) catalyzes the first, ratelimiting step. Genetic loss of PHGDH is toxic towards PHGDH-overexpressing breast cancer cell lines even in the presence of exogenous serine. Here, we use a quantitative high-throughput screen to identify small molecule PHGDH inhibitors. These compounds reduce the production of glucose-derived serine in cells and suppress the growth of PHGDH-dependent cancer cells in culture and in orthotopic xenograft tumors. Surprisingly, PHGDH inhibition reduced the incorporation into nucleotides of one-carbon units from glucose-derived and exogenous serine. We conclude that glycolytic serine synthesis coordinates the use of one-carbon units from endogenous and exogenous serine in nucleotide synthesis, and suggest that one-carbon unit wasting may contribute to the efficacy of PHGDH inhibitors in vitro and in vivo.Damon Runyon Cancer Research Foundation (Sally Gordon Fellowship DRG-112-12)United States. Dept. of Defense. Breast Cancer Research Program (Postdoctoral Fellowship BC120208)American Society for Radiation Oncology (Resident Seed Grant RA-2011-1)European Molecular Biology Organization (Long-Term Fellowship)National Institutes of Health (U.S.) (R03 DA034602-01A1, R01 CA129105, R01 CA103866, and R37 AI047389)United States. Department of Defense (W81XWH-14-PRCRP-IA)Alexander and Margaret Stewart Trus

    Similar works