203 research outputs found

    New Result for the Neutron \u3cem\u3eÎČ\u3c/em\u3e-Asymmetry Parameter \u3cem\u3eA\u3c/em\u3e\u3csub\u3e0\u3c/sub\u3e from UCNA

    Get PDF
    Background: The neutron ÎČ-decay asymmetry parameter A0 defines the angular correlation between the spin of the neutron and the momentum of the emitted electron. Values for A0 permit an extraction of the ratio of the weak axial-vector to vector coupling constants, λ ≡ gA/gV, which under assumption of the conserved vector current hypothesis (gV = 1) determines gA. Precise values for gA are important as a benchmark for lattice QCD calculations and as a test of the standard model. Purpose: The UCNA experiment, carried out at the Ultracold Neutron (UCN) source at the Los Alamos Neutron Science Center, was the first measurement of any neutron ÎČ-decay angular correlation performed with UCN. This article reports the most precise result for A0 obtained to date from the UCNA experiment, as a result of higher statistics and reduced key systematic uncertainties, including from the neutron polarization and the characterization of the electron detector response. Methods: UCN produced via the downscattering of moderated spallation neutrons in a solid deuterium crystal were polarized via transport through a 7 T polarizing magnet and a spin flipper, which permitted selection of either spin state. The UCN were then contained within a 3-m long cylindrical decay volume, situated along the central axis of a superconducting 1 T solenoidal spectrometer. With the neutron spins then oriented parallel or anti-parallel to the solenoidal field, an asymmetry in the numbers of emitted decay electrons detected in two electron detector packages located on both ends of the spectrometer permitted an extraction of A0. Results: The UCNA experiment reports a new 0.67% precision result for A0 of A0 = −0.12054(44)stat(68)syst, which yields λ = gA/gV = −1.2783(22). Combination with the previous UCNA result and accounting for correlated systematic uncertainties produces A0=−0.12015(34)stat(63)syst and λ = gA/gV = −1.2772(20). Conclusions: This new result for A0 and gA/gV from the UCNA experiment has provided confirmation of the shift in values for gA/gV that has emerged in the published results from more recent experiments, which are in striking disagreement with the results from older experiments. Individual systematic corrections to the asymmetries in older experiments (published prior to 2002) were \u3e 10%, whereas those in the more recent ones (published after 2002) have been of the scale of \u3c 2%. The impact of these older results on the global average will be minimized should future measurements of A0 reach the 0.1% level of precision with central values near the most recent results

    Attenuation of Toll-Like Receptor Expression and Function in Latent Tuberculosis by Coexistent Filarial Infection with Restoration Following Antifilarial Chemotherapy

    Get PDF
    Mycobacterium tuberculosis (Mtb) and filarial coinfection is highly prevalent, and the presence of filarial infections may regulate the Toll-like receptor (TLR)-dependent immune response needed to control Mtb infection. By analyzing the baseline and mycobacterial antigen–stimulated expression of TLR1, 2, 4, and 9 (in individuals with latent tuberculosis [TB] with or without filarial infection), we were able to demonstrate that filarial infection, coincident with Mtb, significantly diminishes both baseline and Mtb antigen-specific TLR2 and TLR9 expression. In addition, pro-inflammatory cytokine responses to TLR2 and 9 ligands are significantly diminished in filaria/TB-coinfected individuals. Definitive treatment of lymphatic filariasis significantly restores the pro-inflammatory cytokine responses in individuals with latent TB. Coincident filarial infection exerted a profound inhibitory effect on protective mycobacteria-specific TLR-mediated immune responses in latent tuberculosis and suggests a novel mechanism by which concomitant filarial infections predispose to the development of active tuberculosis in humans

    Sustainable intensification for a larger global rice bowl.

    Get PDF
    Future rice systems must produce more grain while minimizing the negative environmental impacts. A key question is how to orient agricultural research & development (R&D) programs at national to global scales to maximize the return on investment. Here we assess yield gap and resource-use efficiency (including water, pesticides, nitrogen, labor, energy, and associated global warming potential) across 32 rice cropping systems covering half of global rice harvested area. We show that achieving high yields and high resource-use efficiencies are not conflicting goals. Most cropping systems have room for increasing yield, resource-use efficiency, or both. In aggregate, current total rice production could be increased by 32%, and excess nitrogen almost eliminated, by focusing on a relatively small number of cropping systems with either large yield gaps or poor resource-use efficiencies. This study provides essential strategic insight on yield gap and resource-use efficiency for prioritizing national and global agricultural R&D investments to ensure adequate rice supply while minimizing negative environmental impact in coming decades

    Circulating Microbial Products and Acute Phase Proteins as Markers of Pathogenesis in Lymphatic Filarial Disease

    Get PDF
    Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients. Dysregulated host inflammatory responses leading to systemic immune activation are thought to play a central role in filarial disease pathogenesis. We measured the plasma levels of microbial translocation markers, acute phase proteins, and inflammatory cytokines in individuals with chronic filarial pathology with (CP Ag+) or without (CP Ag−) active infection; with clinically asymptomatic infections (INF); and in those without infection (endemic normal [EN]). Comparisons between the two actively infected groups (CP Ag+ compared to INF) and those without active infection (CP Ag− compared to EN) were used preliminarily to identify markers of pathogenesis. Thereafter, we tested for group effects among all the four groups using linear models on the log transformed responses of the markers. Our data suggest that circulating levels of microbial translocation products (lipopolysaccharide and LPS-binding protein), acute phase proteins (haptoglobin and serum amyloid protein-A), and inflammatory cytokines (IL-1ÎČ, IL-12, and TNF-α) are associated with pathogenesis of disease in lymphatic filarial infection and implicate an important role for circulating microbial products and acute phase proteins

    Mixed Th1 and Th2 Mycobacterium tuberculosis-specific CD4 T cell responses in patients with active pulmonary tuberculosis from Tanzania.

    Get PDF
    Mycobacterium tuberculosis (Mtb) and helminth infections elicit antagonistic immune effector functions and are co-endemic in several regions of the world. We therefore hypothesized that helminth infection may influence Mtb-specific T-cell immune responses. We evaluated the cytokine profile of Mtb-specific T cells in 72 individuals with pulmonary TB disease recruited from two Sub-Saharan regions with high and moderate helminth burden i.e. 55 from Tanzania (TZ) and 17 from South Africa (SA), respectively. We showed that Mtb-specific CD4 T-cell functional profile of TB patients from Tanzania are primarily composed of polyfunctional Th1 and Th2 cells, associated with increased expression of Gata-3 and reduced expression of T-bet in memory CD4 T cells. In contrast, the cytokine profile of Mtb-specific CD4 T cells of TB patients from SA was dominated by single IFN-γ and dual IFN-γ/TNF-α and associated with TB-induced systemic inflammation and elevated serum levels of type I IFNs. Of note, the proportion of patients with Mtb-specific CD8 T cells was significantly reduced in Mtb/helminth co-infected patients from TZ. It is likely that the underlying helminth infection and possibly genetic and other unknown environmental factors may have caused the induction of mixed Th1/Th2 Mtb-specific CD4 T cell responses in patients from TZ. Taken together, these results indicate that the generation of Mtb-specific CD4 and CD8 T cell responses may be substantially influenced by environmental factors in vivo. These observations may have major impact in the identification of immune biomarkers of disease status and correlates of protection

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Full text link
    Measurements of electrons from Îœe\nu_e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Comment: 19 pages, 10 figure

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    Get PDF
    A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10)\mathcal{O}(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the Îœe\nu_e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(EÎœ)\sigma(E_\nu) for charged-current Îœe\nu_e absorption on argon. In the context of a simulated extraction of supernova Îœe\nu_e spectral parameters from a toy analysis, we investigate the impact of σ(EÎœ)\sigma(E_\nu) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(EÎœ)\sigma(E_\nu) must be substantially reduced before the Îœe\nu_e flux parameters can be extracted reliably: in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10\% bias with DUNE requires σ(EÎœ)\sigma(E_\nu) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(EÎœ)\sigma(E_\nu). A direct measurement of low-energy Îœe\nu_e-argon scattering would be invaluable for improving the theoretical precision to the needed level.Comment: 25 pages, 21 figure

    Alcohol use and burden for 195 countries and territories, 1990-2016 : a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    Background Alcohol use is a leading risk factor for death and disability, but its overall association with health remains complex given the possible protective effects of moderate alcohol consumption on some conditions. With our comprehensive approach to health accounting within the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we generated improved estimates of alcohol use and alcohol-attributable deaths and disability-adjusted life-years (DALYs) for 195 locations from 1990 to 2016, for both sexes and for 5-year age groups between the ages of 15 years and 95 years and older. Methods Using 694 data sources of individual and population-level alcohol consumption, along with 592 prospective and retrospective studies on the risk of alcohol use, we produced estimates of the prevalence of current drinking, abstention, the distribution of alcohol consumption among current drinkers in standard drinks daily (defined as 10 g of pure ethyl alcohol), and alcohol-attributable deaths and DALYs. We made several methodological improvements compared with previous estimates: first, we adjusted alcohol sales estimates to take into account tourist and unrecorded consumption; second, we did a new meta-analysis of relative risks for 23 health outcomes associated with alcohol use; and third, we developed a new method to quantify the level of alcohol consumption that minimises the overall risk to individual health. Findings Globally, alcohol use was the seventh leading risk factor for both deaths and DALYs in 2016, accounting for 2.2% (95% uncertainty interval [UI] 1.5-3.0) of age-standardised female deaths and 6.8% (5.8-8.0) of age-standardised male deaths. Among the population aged 15-49 years, alcohol use was the leading risk factor globally in 2016, with 3.8% (95% UI 3.2-4-3) of female deaths and 12.2% (10.8-13-6) of male deaths attributable to alcohol use. For the population aged 15-49 years, female attributable DALYs were 2.3% (95% UI 2.0-2.6) and male attributable DALYs were 8.9% (7.8-9.9). The three leading causes of attributable deaths in this age group were tuberculosis (1.4% [95% UI 1. 0-1. 7] of total deaths), road injuries (1.2% [0.7-1.9]), and self-harm (1.1% [0.6-1.5]). For populations aged 50 years and older, cancers accounted for a large proportion of total alcohol-attributable deaths in 2016, constituting 27.1% (95% UI 21.2-33.3) of total alcohol-attributable female deaths and 18.9% (15.3-22.6) of male deaths. The level of alcohol consumption that minimised harm across health outcomes was zero (95% UI 0.0-0.8) standard drinks per week. Interpretation Alcohol use is a leading risk factor for global disease burden and causes substantial health loss. We found that the risk of all-cause mortality, and of cancers specifically, rises with increasing levels of consumption, and the level of consumption that minimises health loss is zero. These results suggest that alcohol control policies might need to be revised worldwide, refocusing on efforts to lower overall population-level consumption.Peer reviewe

    The DUNE far detector vertical drift technology. Technical design report

    Get PDF
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
    • 

    corecore