706 research outputs found

    Acute neurological care in north-east Germany with telemedicine support (ANNOTeM): protocol of a multi-center, controlled, open-label, two-arm intervention study

    Get PDF
    Background: Both diagnosis and treatment of neurological emergencies require neurological expertise and are time-sensitive. The lack of fast neurological expertise in regions with underserved infrastructure poses a major barrier for state-of-the-art care of patients with acute neurological diseases and leads to disparity in provision of health care. The main purpose of ANNOTeM (acute neurological care in North East Germany with telemedicine support) is to establish effective and sustainable support structures for evidence based treatments for stroke and other neurological emergencies and to improve outcome for acute neurological diseases in these rural regions. Methods: A “hub-and-spoke” network structure was implemented connecting three academic neurological centres (“hubs”) and rural hospitals (“spokes”) caring for neurological emergencies. The network structure includes (1) the establishment of a 24/7 telemedicine consultation service, (2) the implementation of standardized operating procedures (SOPs) in the network hospitals, (3) a multiprofessional training scheme, and (4) a quality management program. Data from three major health insurance companies as well as data from the quality management program are being collected and evaluated. Primary outcome is the composite of first time of receiving paid outpatient nursing care, first time of receiving care in a nursing home, or death within 90 days after hospital admission. Discussion: Beyond stroke only few studies have assessed the effects of telemedically supported networks on diagnosis and outcome of neurological emergencies. ANNOTeM will provide information whether this approach leads to improved outcome. In addition, a health economic analysis will be performed. Study registration: German Clinical Trials Register DRKS00013067, date of registration: November 16 th, 2017, URL: http://www.drks.de/DRKS0001306

    A New Hemodynamic Ex Vivo Model for Medical Devices Assessment

    Get PDF
    Introduction: In stent restenosis (ISR) remains a major public health concern with an increased morbidity, mortality and health-related costs. Drug-eluting stents (DES) have reduced ISR, but are associated with healing-related issues or hypersensitivity reactions, leading to an increased risk of late acute stent thrombosis. Evaluations of new DES are based on animal models or in vitro release systems which show several limitations. The role of flow and shear stress on endothelial cell and ISR has also been emphasized. The aim of this work was to design and first evaluate an original bioreactor, reproducing ex vivo hemodynamic and biological conditions similar to human conditions, to further evaluate new DES. Methods & Results: This bioreactor was designed to study up to 6 stented arteries connected in bypass, immersed in a culture box, in which circulated a physiological systolo-diastolic resistive flow. Two centrifugal pumps drove the flow. The principal pump generated pulsating flows by modulation of rotation velocity, and the second pump worked at constant rotation velocity, ensuring the counter pressure levels and backflows. The flow rate, the velocity profile, the arterial pressure and the resistance of the flow were adjustable. The bioreactor was placed in an incubator to reproduce a biological environment. A first experience of feasibility was realized over a period of 24 days. Three rat aortic thoracic arteries were placed into the bioreactor, immersed in cell culture medium change every 3 days, and with a circulating systole diastolic flux circulating among the entire experimentation. There was no infection, no leak. At the end of experimentation, a morphometric analysis was performed confirming the viability of the arteries. Conclusion: We design and patent an original hemodynamic ex vivo model to further study new DES and ISR. We will next validate this ex vivo model of ISR reproducing this experimentation with stented arteries. Once validated, this bioreactor will allow characterization of the velocity field and drug transfers within a stented artery with new functionalized DES, with experimental means not available in vivo. Another main point will be the reduction of animal experimentation, and the availability of first results of new DES in human tissues (human infra popliteal or coronary arteries collected during human donation)

    Alterations in cognitive performance during passive hyperthermia are task dependent

    Get PDF
    The objectives of this study were to (1) assess the effect of passive heating upon attention and memory task performance, and (2) evaluate the effectiveness of the application of cold packs to the head on preserving these functions. Using a counterbalance design 16 subjects underwent three trials: a control (CON, 20°C, 40% rH), hot (HOT, 50°C, 50% rH) and hot with the head kept cool (HHC). In each condition, three attention tests and two memory tests were performed. Mean core, forehead and tympanic temperatures were all significantly higher (p< 0.05) during HOT (38.6° ±0.1°, 39.6° ±0.2° and 38.8°±0.1°C, respectively) and HHC (38°±0.2, 37.7°±0.3° and 37.7°C, respectively) than in CON (37.1°±0.6°, 33.3° ±0.2° and 35.9°±0.3°C, respectively). Results indicate that there was impairment in working memory with heat exposure (p < 0.05) without alteration in attentional processes. The regular application of cold packs only prevented the detrimental effect of hyperthermia on short-term memory. Our results show that impairments in cognitive function with passive hyperthermia and the beneficial effect of head cooling are task dependent and suggests that exposure to a hot environment is a competing variable to the cognitive processes

    Exome-chip meta-analysis identifies novel loci associated with cardiac conduction, including ADAMTS6.

    Get PDF
    BACKGROUND: Genome-wide association studies conducted on QRS duration, an electrocardiographic measurement associated with heart failure and sudden cardiac death, have led to novel biological insights into cardiac function. However, the variants identified fall predominantly in non-coding regions and their underlying mechanisms remain unclear. RESULTS: Here, we identify putative functional coding variation associated with changes in the QRS interval duration by combining Illumina HumanExome BeadChip genotype data from 77,898 participants of European ancestry and 7695 of African descent in our discovery cohort, followed by replication in 111,874 individuals of European ancestry from the UK Biobank and deCODE cohorts. We identify ten novel loci, seven within coding regions, including ADAMTS6, significantly associated with QRS duration in gene-based analyses. ADAMTS6 encodes a secreted metalloprotease of currently unknown function. In vitro validation analysis shows that the QRS-associated variants lead to impaired ADAMTS6 secretion and loss-of function analysis in mice demonstrates a previously unappreciated role for ADAMTS6 in connexin 43 gap junction expression, which is essential for myocardial conduction. CONCLUSIONS: Our approach identifies novel coding and non-coding variants underlying ventricular depolarization and provides a possible mechanism for the ADAMTS6-associated conduction changes.BH

    Discovery of novel heart rate-associated loci using the Exome Chip

    Get PDF
    Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. Genome-wide association study analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9% of the variation. This study aims to discover new genetic loci associated with heart rate from Exome Chip meta-analyses. Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104 452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134 251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods. We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2 and SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long-range regulatory chromatin interactions in heart tissue (SCD, SLF2 and MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants. Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies

    Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation

    Get PDF
    Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death. Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups. To further define the genetic basis of atrial fibrillation, we performed large-scale, trans-ancestry meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 17,931 individuals with atrial fibrillation and 115,142 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,346 cases and 132,086 referents. We identified 12 new genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate the identification of new potential targets for drug discovery

    A unified data infrastructure to support large-scale rare disease research

    Get PDF
    The Solve-RD project brings together clinicians, scientists, and patient representatives from 51 institutes spanning 15 countries to collaborate on genetically diagnosing ("solving") rare diseases (RDs). The project aims to significantly increase the diagnostic success rate by co-analysing data from thousands of RD cases, including phenotypes, pedigrees, exome/genome sequencing and multi-omics data. Here we report on the data infrastructure devised and created to support this co-analysis. This infrastructure enables users to store, find, connect, and analyse data and metadata in a collaborative manner. Pseudonymised phenotypic and raw experimental data are submitted to the RD-Connect Genome-Phenome Analysis Platform and processed through standardised pipelines. Resulting files and novel produced omics data are sent to the European Genome-phenome Archive, which adds unique file identifiers and provides long-term storage and controlled access services. MOLGENIS "RD3" and Cafe Variome "Discovery Nexus" connect data and metadata and offer discovery services, and secure cloud-based "Sandboxes" support multi-party data analysis. This proven infrastructure design provides a blueprint for other projects that need to analyse large amounts of heterogeneous data.3. Good health and well-bein

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10&nbsp;years; 78.2% included were male with a median age of 37&nbsp;years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    ExomeChip-Wide Analysis of 95 626 Individuals Identifies 10 Novel Loci Associated With QT and JT Intervals

    Get PDF
    BACKGROUND: QT interval, measured through a standard ECG, captures the time it takes for the cardiac ventricles to depolarize and repolarize. JT interval is the component of the QT interval that reflects ventricular repolarization alone. Prolonged QT interval has been linked to higher risk of sudden cardiac arrest.METHODS AND RESULTS: We performed an ExomeChip-wide analysis for both QT and JT intervals, including 209 449 variants, both common and rare, in 17 341 genes from the Illumina Infinium HumanExome BeadChip. We identified 10 loci that modulate QT and JT interval duration that have not been previously reported in the literature using single-variant statistical models in a meta-analysis of 95 626 individuals from 23 cohorts (comprised 83 884 European ancestry individuals, 9610 blacks, 1382 Hispanics, and 750 Asians). This brings the total number of ventricular repolarization associated loci to 45. In addition, our approach of using coding variants has highlighted the role of 17 specific genes for involvement in ventricular repolarization, 7 of which are in novel loci.CONCLUSIONS: Our analyses show a role for myocyte internal structure and interconnections in modulating QT interval duration, adding to previous known roles of potassium, sodium, and calcium ion regulation, as well as autonomic control. We anticipate that these discoveries will open new paths to the goal of making novel remedies for the prevention of lethal ventricular arrhythmias and sudden cardiac arrest
    corecore