11 research outputs found

    Overall Picture Of Expressed Heat Shock Factors In Glycine Max, Lotus Japonicusand Medicago Truncatula

    Get PDF
    Heat shock (HS) leads to the activation of molecular mechanisms, known as HS-response, that prevent damage and enhance survival under stress. Plants have a flexible and specialized network of Heat Shock Factors (HSFs), which are transcription factors that induce the expression of heat shock proteins. The present work aimed to identify and characterize the Glycine maxHSF repertory in the Soybean Genome Project (GENOSOJA platform), comparing them with other legumes (Medicago truncatulaand Lotus japonicus) in view of current knowledge of Arabidopsis thaliana. The HSF characterization in leguminous plants led to the identification of 25, 19 and 21 candidate ESTs in soybean, Lotusand Medicago, respectively. A search in the SuperSAGE libraries revealed 68 tags distributed in seven HSF gene types. From the total number of obtained tags, more than 70% were related to root tissues (water deficit stress libraries vs.controls), indicating their role in abiotic stress responses, since the root is the first tissue to sense and respond to abiotic stress. Moreover, as heat stress is related to the pressure of dryness, a higher HSF expression was expected at the water deficit libraries. On the other hand, expressive HSF candidates were obtained from the library inoculated with Asian Soybean Rust, inferring crosstalk among genes associated with abiotic and biotic stresses. Evolutionary relationships among sequences were consistent with different HSF classes and subclasses. Expression profiling indicated that regulation of specific genes is associated with the stage of plant development and also with stimuli from other abiotic stresses pointing to the maintenance of HSF expression at a basal level in soybean, favoring its activation under heat-stress conditions. © 2012, Sociedade Brasileira de Genética.35SUPPL.1247259Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J Mol Biol, 215, pp. 403-410Baniwal, S.K., Chan, K.Y., Scharf, K.-D., Nover, L., Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4* (2007) J Biol Chem, 282, pp. 3605-3613Bharti, K., Schimidt, E., Lyck, R., Bublak, D., Scharf, K.-D., Isolation and characterization of HsfA3, a new heat stress transcription factor of Lycopersicon peruvianum (2000) Plant J, 22, pp. 355-365Bharti, K., von Koskull-Döring, P., Bharti, S., Kumar, P., Tintschl-Körbitzer, A., Treuter, E., Nover, L., Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with HAC1/CBP (2004) Plant Cell, 16, pp. 1521-1535Efeoglu, B., Heat shock proteins and heat shock response in plants (2009) G U J Sci, 22, pp. 67-75Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D., Cluster analysis and display of genome-wide expression patterns (1998) Proc Natl Acad Sci USA, 95, pp. 14863-14868Fehr, W.R., Caviness, C.E., Burmood, D.T., Pennington, I.S., Stage of development descriptions for soybeans, Glycine max (L.) Merrill (1971) Crop Sci, 11, pp. 929-931Fehr, W.R., Caviness, C.E., (1977) Stage of Soybean Development, p. 12. , Special Report n. 80. Ames, Iowa State University of Science and Technology, IowaGlombitza, S., Dubuis, P.-H., Thulke, O., Welzl, G., Bovet, L., Götz, M., Affenzeller, M., Asnaghi, C., Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism (2004) Plant Mol Biol, 54, pp. 817-835Heerklotz, D., Doring, P., Bonzelius, F., Winkelhaus, S., Nover, L., The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2 (2001) Mol Cell Biol, 21, pp. 1759-1768Hoagland, D., Arnon, D.I., The water culture method for growing plants without soil (1950) Calif Agric Exp Stn Circ, 347, pp. 1-32Hsu, S.-F., Lai, H.-C., Jinn, T.-L., Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis (2010) Plant Physiol, 153, pp. 773-784Hu, W., Hu, G., Han, B., Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice (2009) Plant Sci, 176, pp. 583-590Kido, E.A., Barbosa, P.K., Ferreira Neto, J.C.R., Pandolfi, V., Houllou-Kido, L.M., Crovella, S., Benko-Iseppon, A.M., Identification of plant protein kinases in response to abiotic and biotic stresses using SuperSAGE (2011) Curr Prot Pept Sci, 12, pp. 643-656Kotak, S., Port, M., Ganguli, A., Bicker, F., von Koskull-Doring, P., Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class a Hsfs with AHA and NES motifs essential for activator function and intracellular localization (2004) Plant J, 39, pp. 98-112Kotak, S., Larkindale, J., Lee, U., von Koskull-Doring, P., Vierling, E., Scharf, K.D., Complexity of the heat stress response in plants (2007) Curr Opin Plant Biol, 10, pp. 310-316Li, H.-Y., Chang, C.-S., Lu, L.-S., Liu, C.-A., Chan, M.-T., Charng, Y.-Y., Over-expression of Arabidopsis thaliana heat shock factor gene (AtHsfA1b) enhances chilling tolerance in transgenic tomato (2004) Bot Bull Acad Sin, 44, pp. 129-140Li, M., Berendzen, K.W., Schoffl, F., Promoter specificity and interactions between early and late Arabidopsis heat shock factors (2010) Plant Mol Biol, 73, pp. 559-567McClean, P.E., Mamidi, S., McConnell, M., Chikara, S., Lee, R., Synteny mapping between common bean and soybean reveals extensive blocks of shared loci (2010) BMC Genomics, 11, pp. e184Miller, G., Mittler, R., Could heat shock transcription factors function as hydrogen peroxide sensors in plant? (2006) Ann Bot, 98, pp. 279-288Mittal, D., Chakrabarti, S., Sarkar, A., Singh, A., Grover, A., Heat shock factor gene family in rice: Genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses (2009) Plant Physiol Biochem, 47, pp. 785-795Mochida, K., Yoshida, T., Sakurai, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L.-S.P., In silico analysis of transcription factor repertoire and prediction of stress responsive transcription factors in soybean (2009) DNA Res, 16, pp. 353-369Mochida, K., Yoshida, T., Sakurai, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L.-S.P., LegumeTFDB: An in-tegrative database of Glycine max, Lotus japonicus and Medicago truncatula transcription factors (2009) Bioinformatics, 26, pp. 290-291Nascimento, L.C., Costa, G.G.L., Binneck, E., Pereira, G.A.G., Caraz-Zolle, M.F., A web-based bioinformatics interface applied to Genosoja Project: Databases and pipelines (2012) Genet Mol Biol, 35 (SUPPL. 1), pp. 203-211Nover, L., Bharti, K., Doring, P., Mishra, S.K., Ganguli, A., Scharf, K.-D., Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need? (2001) Cell Stress Chap, 6, pp. 177-189Pirkkala, L., Nykanen, I., Sistonen, L., Roles of the heat shock transcription factors in regulation of the heat shock response and beyond (2001) FASEB J, 15, pp. 1118-1131Ruelland, E., Zachowski, A., How plants sense temperature (2010) Environ Exp Bot, 69, pp. 225-232Sato, Y., Yokoya, S., Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7 (2008) Plant Cell Rep, 27, pp. 329-334Scharf, K.-D., Rose, S., Thierfelder, J., Nover, L., Two cDNAs for tomato heat stress transcription factors (1993) Plant Physiol, 102, pp. 1355-1356Scharf, K.-D., Rose, S., Zott, W., Schoffl, F., Nover, L., Three tomato genes code for heat stress transcription factors with a regionofremarkable homology to the DNA-binding domain of the yeast HSF (1990) EMBO J, 9, pp. 4495-4501Schöff, F., PrÀndl, R., Reindl, A., Regulation of the heat-shock response (1998) Plant Physiol, 117, pp. 1135-1141Sung, D.-Y., Kaplan, F., Lee, K.-J., Guy, C.L., Acquired tolerance to temperature extremes (2003) Trends Plant Sci, 8, pp. 179-187Swindell, W.R., Huebner, M., Weber, A.P., Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways (2007) BMC Genomics, 8, pp. e125Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28, pp. 2731-2739Treshow, M., (1970) Environment and Plant Response, p. 421. , McGraw-Hill Company, New YorkTreuter, E., Nover, L., Ohme, K., Scharf, K.-D., Promoter specificity and deletion analysis of three tomato heat stress transcription factors (1993) Mol Gen Genet, 240, pp. 113-125Yamada, K., Fukao, Y., Hayashi, M., Fukazawa, M., Suzuki, I., Nishimura, M., Cytosolic HSP90 regulated the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana (2007) J Biol Chem, 282, pp. 37794-3780

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset

    Measurement of event-shape observables in Z→ℓ+ℓ− events in pp collisions at √ s=7 TeV with the ATLAS detector at the LHC

    Get PDF
    Event-shape observables measured using charged particles in inclusive ZZ-boson events are presented, using the electron and muon decay modes of the ZZ bosons. The measurements are based on an integrated luminosity of 1.1fb−11.1 {\rm fb}^{-1} of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy s=7\sqrt{s}=7 TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the ZZ-boson decay, are measured in different ranges of transverse momentum of the ZZ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and F\mathcal{F}-parameter, which are in particular sensitive to properties of the underlying event at small values of the ZZ-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high ZZ-boson transverse momenta than at low ZZ-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.Comment: 36 pages plus author list + cover page (54 pages total), 14 figures, 4 tables, submitted to EPJC, All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-0

    Estudos sobre educação bilĂ­ngĂŒe e escolarização em contextos de minorias lingĂŒisticas no Brasil<a NAME="top50"></a>

    No full text

    Dimensionnement de petits barrages dans le Nordeste brésilien semi-aride : minute incomplÚte

    No full text
    Les auteurs proposent une méthode de classification hydrologique de petits bassins versants dans le Nordeste semi-aride. Cette méthode est basée tout d'abord sur une classification "hydro-pédologique" des sols en fonction de leurs caractéristiques hydrodynamiques, ensuite sur l'estimation des totaux pluviométriques, des conditions climatiques et d'autres caractÚres physiographiques et morphométriques des bassins versants d'alimentation. Un dimensionnement du volume du barrage de la taille du déversoir est ensuite proposé pour divers scénarios de gestion. (Résumé d'auteur

    Search for a heavy Standard Model Higgs boson in the channel H→ZZ→l+l−qqˉH\rightarrow ZZ\rightarrow l^{+}l^{-} q\bar{q} using the ATLAS detector

    Get PDF
    A search for a heavy Standard Model Higgs boson decaying via H->ZZ->llqq, where l=e,mu, is presented. The search is performed using a data set of pp collisions at sqrt(s)=7 TeV, corresponding to an integrated luminosity of 1.04 fb^-1 collected in 2011 by the ATLAS detector at the CERN LHC collider. No significant excess of events above the estimated background is found. Upper limits at 95% confidence level on the production cross section (relative to that expected from the Standard Model) of a Higgs boson with a mass in the range between 200 and 600 GeV are derived. Within this mass range, there is at present insufficient sensitivity to exclude a Standard Model Higgs boson. For a Higgs boson with a mass of 360 GeV, where the sensitivity is maximal, the observed and expected cross section upper limits are factors of 1.7 and 2.7, respectively, larger than the Standard Model prediction.Comment: 11 pages plus author list (26 pages total), 4 figures, 1 table, final version to appear in Physics Letters

    Charged-particle multiplicities in <i>pp</i> interactions at &#8730;s = 900 GeV measured with the ATLAS detector at the LHC

    No full text
    The first measurements from proton–proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |η|&#60;2.5 and pT&#62;500 MeV. The measurements are compared to Monte Carlo models of proton–proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at η=0 is measured to be1.333&#177;0.003(stat.)&#177;0.040(syst.), which is 5–15% higher than the Monte Carlo models predict

    Measurement of the isolated diphoton cross section in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    No full text
    15 pages plus author list (27 pages total), 9 figures, 2 tables, submitted to Phys. Rev. DThe ATLAS experiment has measured the production cross-section of events with two isolated photons in the final state, in proton-proton collisions at sqrt(s) = 7 TeV. The full data set acquired in 2010 is used, corresponding to an integrated luminosity of 37 pb-1. The background, consisting of hadronic jets and isolated electrons, is estimated with fully data-driven techniques and subtracted. The differential cross-sections, as functions of the di-photon mass, total transverse momentum and azimuthal separation, are presented and compared to the predictions of next-to-leading-order QCD
    corecore