98 research outputs found

    Eclampsia

    Get PDF
    1. That the reasons 'why the incidence of eclampsia is higher in South India, than it is in Western countries are probably:- (a) the higher percentage of young primiparae. (b) the greater number of factors, which may precipitate an attack in border line cases of albuminuria.2. That the influence of climate, social conditions and caste is of some importance:— Climate, in that it is enervating and encourages sedentary habits; Social conditions, because of the superstitions and traditions, which consider as an essential part of the confinement, the presence of the untrained barber-woman as midwife-in-chief; Caste, because of the individual caste regulations, which control such conditions as diet, early marriage and its consummation, purdah and education of women.3. That the hope for the future of the young mothers of Southern India lies in the provision of an increased number of accessible ante-natal centres, with well trained health visitors and corporation nurses attached, who may be expected to supersede eventually the untrained Barber, woman class of midwife

    The Year of Polar Prediction

    Get PDF
    The Year of Polar Prediction (YOPP) has the mission to enable a significant improvement in environmental prediction capabilities for the polar regions and beyond, by coordinating a period of intensive observing, modelling, prediction, verification, user- engagement and education activities. The YOPP Core Phase will be from mid-2017 to mid-2019, flanked by a Preparation Phase and a Consolidation Phase. YOPP is a key component of the World Meteorological Organization – World Weather Research Programme (WMO-WWRP) Polar Prediction Project (PPP). The objectives of YOPP are to: 1. Improve the existing polar observing system (better coverage, higher-quality observations); 2. Gather additional observations through field programmes aimed at improving understanding of key polar processes; 3. Develop improved representation of key polar processes in coupled (and uncoupled) models used for prediction; 4. Develop improved (coupled) data assimilation systems accounting for challenges in the polar regions such as sparseness of observational data; 5. Explore the predictability of the atmosphere-cryosphere-ocean system, with a focus on sea ice, on time scales from days to seasons; 6. Improve understanding of linkages between polar regions and lower latitudes and assess skill of models representing these linkages; 7. Improve verification of polar weather and environmental predictions to obtain better quantitative knowledge on model performance, and on the skill, especially for user-relevant parameters; 8. Demonstrate the benefits of using predictive information for a spectrum of user types and services; 9. Provide training opportunities to generate a sound knowledge base (and its transfer across generations) on polar prediction related issues. The PPP Steering Group provides endorsement for projects that contribute to YOPP to enhance coordination, visibility, communication, and networking. This White Paper is based largely on the much more comprehensive YOPP Implementation Plan (WWRP/PPP No. 3 – 2014), but has an emphasis on Arctic observations

    WWRP Polar Prediction Project Implementation Plan for the Year of Polar Prediction (YOPP)

    Get PDF
    The Year of Polar Prediction (YOPP) is planned for mid-2017 to mid-2019, centred on 2018. Its goal is to enable a significant improvement in environmental prediction capabilities for the polar regions and beyond, by coordinating a period of intensive observing, modelling, prediction, verification, user-engagement and education activities. With a focus on time scales from hours to a season, YOPP is a major initiative of the World Meteorological Organization’s World Weather Research Programme (WWRP) and a key component of the Polar Prediction Project (PPP). YOPP is being planned and coordinated by the PPP Steering Group together with representatives from partners and other initiatives, including the World Climate Research Programme’s Polar Climate Predictability Initiative (PCPI). The objectives of YOPP are to: 1. Improve the existing polar observing system (enhanced coverage, higher-quality observations). 2. Gather additional observations through field programmes aimed at improving understanding of key polar processes. 3. Develop improved representation of key polar processes in (un)coupled models used for prediction. 4. Develop improved (coupled) data assimilation systems accounting for challenges in the polar regions such as sparseness of observational data. 5. Explore the predictability of the atmosphere-cryosphere-ocean system, with a focus on sea ice, on time scales from hours to a season. 6. Improve understanding of linkages between polar regions and lower latitudes, assess skill of models representing these linkages, and determine the impact of improved polar prediction on forecast skill in lower latitudes. 7. Improve verification of polar weather and environmental predictions to obtain better quantitative knowledge on model performance, and on the skill, especially for user- relevant parameters. 8. Identify various stakeholders and establish their decisionmaking needs with respect to weather, climate, ice, and related environmental services. 9. Assess the costs and benefits of using predictive information for a spectrum of users and services. 10. Provide training opportunities to generate a sound knowledge base (and its transfer across generations) on polar prediction related issues. YOPP is implemented in three distinct phases. During the YOPP Preparation Phase (2013 through to mid-2017) this Implementation Plan was developed, which includes key outcomes of consultations with partners at the YOPP Summit in July 2015. Plans will be further developed and refined through focused international workshops. There will be engagement with stakeholders and arrangement of funding, coordination of observations and modelling activities, and preparatory research. During the YOPP Core Phase (mid-2017 to mid-2019), four elements will be staged: intensive observing periods for both hemispheres, a complementary intensive modelling and prediction period, a period of enhanced monitoring of forecast use in decisionmaking including verification, and a special educational effort. Finally, during the YOPP Consolidation Phase (mid-2019 to 2022) the legacy of data, science and publications will be organized. The WWRP-PPP Steering Group provides endorsement throughout the YOPP phases for projects that contribute to YOPP. This process facilitates coordination and enhances visibility, communication, and networking

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore