231 research outputs found

    A Study of How Flight Instructors Assess Flight Maneuvers and Give Grades: Inter-rater Reliability of Instructor Assessments

    Get PDF
    This article discusses calibration of flight instruction to an academic institution’s “gold standard”. Flight instructors reviewed four lessons within the private pilot curriculum. Each lesson required rating four maneuvers and assigning an overall letter grade. Data was compared to the gold standard set by flight faculty from the institution. Initial data revealed instructors with one year or less of experience had less agreement to the gold standard. A curriculum to rate maneuvers and grade lessons was developed and practice sessions occurred in instructor meetings starting Fall 2013. Post-test results show improvement in agreement in one year or less experienced group

    Wheat Variety Test Results for South Central Kansas - 2022

    Get PDF
    South central Kansas is the highest producing wheat region in Kansas. This report summarizes the results of winter wheat variety tests for 2021-2022 in six locations

    Perturbations in the carbon budget of the tropics

    Get PDF
    The carbon budget of the tropics has been perturbed as a result of human influences. Here, we attempt to construct a ‘bottom-up’ analysis of the biological components of the budget as they are affected by human activities. There are major uncertainties in the extent and carbon content of different vegetation types, the rates of land-use change and forest degradation, but recent developments in satellite remote sensing have gone far towards reducing these uncertainties. Stocks of carbon as biomass in tropical forests and woodlands add up to 271 ± 16 Pg with an even greater quantity of carbon as soil organic matter. Carbon loss from deforestation, degradation, harvesting and peat fires is estimated as 2.01 ± 1.1 Pg annum(−1); while carbon gain from forest and woodland growth is 1.85 ± 0.09 Pg annum(−1). We conclude that tropical lands are on average a small carbon source to the atmosphere, a result that is consistent with the ‘top-down’ result from measurements in the atmosphere. If they were to be conserved, they would be a substantial carbon sink. Release of carbon as carbon dioxide from fossil fuel burning in the tropics is 0.74 Pg annum(−1) or 0.57 MgC person(−1) annum(−1), much lower than the corresponding figures from developed regions of the world

    Nonlinear quantum gravity on the constant mean curvature foliation

    Full text link
    A new approach to quantum gravity is presented based on a nonlinear quantization scheme for canonical field theories with an implicitly defined Hamiltonian. The constant mean curvature foliation is employed to eliminate the momentum constraints in canonical general relativity. It is, however, argued that the Hamiltonian constraint may be advantageously retained in the reduced classical system to be quantized. This permits the Hamiltonian constraint equation to be consistently turned into an expectation value equation on quantization that describes the scale factor on each spatial hypersurface characterized by a constant mean exterior curvature. This expectation value equation augments the dynamical quantum evolution of the unconstrained conformal three-geometry with a transverse traceless momentum tensor density. The resulting quantum theory is inherently nonlinear. Nonetheless, it is unitary and free from a nonlocal and implicit description of the Hamiltonian operator. Finally, by imposing additional homogeneity symmetries, a broad class of Bianchi cosmological models are analyzed as nonlinear quantum minisuperspaces in the context of the proposed theory.Comment: 14 pages. Classical and Quantum Gravity (To appear

    Characterizing Aquifer Heterogeneity Using Bacterial and Bacteriophage Tracers

    Get PDF
    Gravel aquifers act as important potable water sources in Central Western Europe, yet are subject to numerous contamination pressures. Compositional and textural heterogeneity makes protection zone delineation around groundwater supplies in these units challenging. Artificial tracer testing aids character ization. This paper re-appraises tracer test results, presented in Mallèn et al. (2005), in light of new geological and microbiological data. Comparative passive gradient testing, employing a fluorescent solute (Uranine), virus (H40/1 bacteriophage) and comparably-sized bacterial tracers Escherichia coli (E.coli) and Pseudomonas putida (P.putida), was used to investigate a calcareous gravel aquifer’s ability to remove microbiological contaminants at a test site near Munich, Germany. Test results revealed E.coli relative recoveries could exceed those of H40/1 at monitoring wells, 10m and 20m from an injection well, by almost four times; P.putida recoveries varied by a factor of up to three between wells. Application of filtration theory suggested greater attenuation of H40/1, relative to similarly-charged E.coli occurred due to differences in microorganism size, while estimated collision efficiencies appeared comparable. By contrast, more positively charged P.putida experienced greater attenuation at one monitoring point, while lower attenuation rates at the second location indicated the influence of geochemical heterogeneity. Test findings proved consistent with observations from nearby fresh outcrops that suggested thin open framework gravel beds dominated mass transport in the aquifer, while discrete intervals containing stained clasts reflect localized geochemical heterogeneity. Study results highlight the utility of reconciling outcrop observations with artificial tracer test responses, using microbiological tracers with well-defined properties, to characterize aquifer heterogeneity

    Multiple M. tuberculosis Phenotypes in Mouse and Guinea Pig Lung Tissue Revealed by a Dual-Staining Approach

    Get PDF
    A unique hallmark of tuberculosis is the granulomatous lesions formed in the lung. Granulomas can be heterogeneous in nature and can develop a necrotic, hypoxic core which is surrounded by an acellular, fibrotic rim. Studying bacilli in this in vivo microenvironment is problematic as Mycobacterium tuberculosis can change its phenotype and also become acid-fast negative. Under in vitro models of differing environments, M. tuberculosis alters its metabolism, transcriptional profile and rate of replication. In this study, we investigated whether these phenotypic adaptations of M. tuberculosis are unique for certain environmental conditions and if they could therefore be used as differential markers. Bacilli were studied using fluorescent acid-fast auramine-rhodamine targeting the mycolic acid containing cell wall, and immunofluorescence targeting bacterial proteins using an anti-M. tuberculosis whole cell lysate polyclonal antibody. These techniques were combined and simultaneously applied to M. tuberculosis in vitro culture samples and to lung sections of M. tuberculosis infected mice and guinea pigs. Two phenotypically different subpopulations of M. tuberculosis were found in stationary culture whilst three subpopulations were found in hypoxic culture and in lung sections. Bacilli were either exclusively acid-fast positive, exclusively immunofluorescent positive or acid-fast and immunofluorescent positive. These results suggest that M. tuberculosis exists as multiple populations in most conditions, even within seemingly a single microenvironment. This is relevant information for approaches that study bacillary characteristics in pooled samples (using lipidomics and proteomics) as well as in M. tuberculosis drug development

    Lineage-specific evolution of the vertebrate Otopetrin gene family revealed by comparative genomic analyses

    Get PDF
    Background: Mutations in the Otopetrin 1 gene (Otop1) in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment. The encoded protein, Otop1, is the only functionally characterized member of the Otopetrin Domain Protein (ODP) family; the extended sequence and structural preservation of ODP proteins in metazoans suggest a conserved functional role. Here, we use the tools of sequence-and cytogenetic-based comparative genomics to study the Otop1 and the Otop2-Otop3 genes and to establish their genomic context in 25 vertebrates. We extend our evolutionary study to include the gene mutated in Usher syndrome (USH) subtype 1G (Ush1g), both because of the head-to-tail clustering of Ush1g with Otop2 and because Otop1 and Ush1g mutations result in inner ear phenotypes. Results: We established that OTOP1 is the boundary gene of an inversion polymorphism on human chromosome 4p16 that originated in the common human-chimpanzee lineage more than 6 million years ago. Other lineage-specific evolutionary events included a three-fold expansion of the Otop genes in Xenopus tropicalis and of Ush1g in teleostei fish. The tight physical linkage between Otop2 and Ush1g is conserved in all vertebrates. To further understand the functional organization of the Ushg1-Otop2 locus, we deduced a putative map of binding sites for CCCTC-binding factor (CTCF), a mammalian insulator transcription factor, from genome-wide chromatin immunoprecipitation-sequencing (ChIP-seq) data in mouse and human embryonic stem (ES) cells combined with detection of CTCF-binding motifs. Conclusions: The results presented here clarify the evolutionary history of the vertebrate Otop and Ush1g families, and establish a framework for studying the possible interaction(s) of Ush1g and Otop in developmental pathways

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore