1,591 research outputs found

    Demonstration of the Effect of Centre of Mass Height on Postural Sway Using Accelerometry for Balance Analysis

    Get PDF
    The effect of center of mass (COM) height on stand-still postural sway analysis was studied. For this purpose, a measurement apparatus was set up that included an accelerometry unit attached to a rod: three plumb lines, positioned at 50 cm, 75 cm, and 100 cm to the end of the rod, each supported a plumb bob. Using a vice mechanism, the rod was inclined from vertical (0 degree inclination) in steps of 5 degrees to 90 degrees. For each inclination, the corresponding inclination angle was manually measured by a protractor, and the positions of the three plumb bobs on the ground surface were also manually measured using a tape measure. Algebraic operations were used to calculate the inclination angle and the associated displacements of the plumb bobs on the ground surface from the accelerometry data. For each inclination angle, the manual and accelerometry calculated ground displacement produced by each plumb bulb were close. It was demonstrated that the height of COM, where the measurement was taken, affected the projected displacement on the ground surface. A higher height produced a greater displacement. This effect has an implication in postural sway analysis where the accelerometry readings may need comparison amongst subjects with different COM heights. To overcome this, a method that normalized the accelerometry readings by considering the COM height was proposed, and the associated results were presented

    Computer aided monitoring of breast abnormalities in X-ray mammograms

    Get PDF
    X­ray mammography is regarded as the most effective tool for the detection and diagnosis of breast cancer, but the interpretation of mammograms is a difficult and error­prone task. Computer­aided detection (CADe) systems address the problem that radiologists often miss signs of cancers that are retrospectively visible in mammograms. Furthermore, computer­aided diagnosis (CADx) systems assist the radiologist in the classification of mammographic lesions as benign or malignant[1]. This paper details a novel alternative system namely computer­aided monitoring (CAM) system. The designed CAM system can be used to objectively measure the properties of a suspected abnormal area in a mammogram. Thus it can be used to assist the clinician to objectively monitor the abnormality. For instance its response to treatment and consequently its prognosis. The designed CAM system is implemented using the Hierarchical Clustering based Segmentation (HCS) [2] [3] [4] process. Brief description of the implementation of this CAM system is as follows : Using the approximate location and size of the abnormality, obtained from the user, the HCS process automatically identifies the more appropriate boundaries of the different regions within a region of interest (ROI), centred at the approximate location. From the set of, HCS process segmented, regions the user identifies the regions which most likely represent the abnormality and the healthy areas. Subsequently the CAM system compares the characteristics of the user identified abnormal region with that of the healthy region; to differentiate malignant from benign abnormality. In processing sixteen mammograms from mini­MIAS [5], the designed CAM system demonstrated a success rate of 100% in differentiating malignant from benign abnormalities

    Improving medical image perception by hierarchical clustering based segmentation

    Get PDF
    It has been well documented that radiologists' performance is not perfect: they make both false positive and false negative decisions. For example, approximately thirty percent of early lung cancer is missed on chest radiographs when the evidence is clearly visible in retrospect. Currently computer-aided detection (CAD) uses software, designed to reduce errors by drawing radiologists' attention to possible abnormalities by placing prompts on images. Alberdi et al examined the effects of CAD prompts on performance, comparing the negative effect of no prompt on a cancer case with prompts on a normal case. They showed that no prompt on a cancer case can have a detrimental effect on reader sensitivity and that the reader performs worse than if the reader was not using CAD. This became particularly apparent when difficult cases were being read. They suggested that the readers were using CAD as a decision making tool instead of a prompting aid. They conclude that "incorrect CAD can have a detrimental effect on human decisions". The goal of this paper is to explore the possibility of using hierarchical clustering based segmentation (HSC), as a perceptual aid, to improve the performance of the reader

    Improving medical image perception by hierarchical clustering based segmentation

    Get PDF
    It has been well documented that radiologists' performance is not perfect: they make both false positive and false negative decisions. For example, approximately thirty percent of early lung cancer is missed on chest radiographs when the evidence is clearly visible in retrospect [1]. Currently Computer-Aided Detection (CAD) uses software, designed to reduce errors by drawing radiologists' attention to possible abnormalities by placing prompts on images. Alberdi et al examined the effects of CAD prompts on performance, comparing the negative effect of no prompt on a cancer case with prompts on a normal case. They showed that no prompt on a cancer case can have a detrimental effect on reader sensitivity and that the reader performs worse than if the reader was not using CAD. This became particularly apparent when difficult cases were being read. They suggested that the readers were using CAD as a decision making tool instead of a prompting aid. They conclude that "incorrect CAD can have a detrimental effect on human decisions" [2]. The goal of this paper is to explore the possibility of using Hierarchical Clustering based Segmentation (HCS) [3], as a perceptual aid, to improve the performance of the reader

    Evaluation of Vibration Analysis to Assess Bone Mineral Density in Children

    Get PDF
    The effectiveness of vibration analysis to assess bone mineral density (BMD) in children with suspected reduction in bone density was studied. A system was designed that measured the ulna's vibration responses in vivo. The system was evaluated on the ulnae of 48 children (mean age=12.0, std=3.5 years), 31 of whom had been confirmed to have osteogenesis imperfecta (OI). All children had dual energy X-ray absorptiometry (DXA) scan as part of their routine clinical care and vibration analysis was performed on the same day. Frequency spectra of the ulnae's vibration responses were obtained and processed by principal component analysis. Four main principal components were selected and together with age, sex and right hand ulna's length were used in a regression analysis to estimate BMD. Regression analysis was repeated using the children's leave-one-out and partitioning methods. The percentage similarity and correlation between the DXA-derived and vibration analysis estimated BMDs using the leave-one-out were 80.34% and 0.59 and for partitioning were 74.2% and 0.64 respectively. There was correlation between vibration analysis BMD readings and those derived from DXA however a larger study will be needed to better establish the extent to which vibration analysis can assist in assessing bone density in clinical environments

    Assessing material densities by vibration analysis and independent component analysis

    Get PDF
    The aim of this study was to investigate vibration analysis and independent component analysis (ICA) to assess the density of multiple materials making up a single structure. Density is important as it reveals information about physical properties of materials. The density of a single material can be determined from the relationship between its mass and volume. However, when a structure consists of multiple materials, identification of their individual densities from the structure is complicated. Vibration analysis is a technique that reveals information about an object’s physical properties such as its density. The investigation was carried out using a plastic test tube filled separately with three liquids of known densities; water, Chloroform and Methanol. Vibration was inducted into the tube, through an electronic system that produced a single impact at a predefined location on the tube. The resulting vibration signals were recorded using two vibration sensors placed on the tube. A signal source separation technique called ICA was used to obtain the vibration effects of the liquid and the tube. The power spectral densities (PSD) of ICA extracted vibration signals were examined. The frequency of the largest peak in the PSD was related to the liquid’s density under test. The study indicated that vibration analysis may be effective in assessing materials’ densities in a structure that contains multiple materials, however a larger study is needed to explore the findings
    • …
    corecore