664 research outputs found

    Multilayer etching for kerf-free solar cells from macroporous silicon

    Get PDF
    Kerf-free techniques for subdividing a single thick crystalline Si wafer into a multitude of thin Si layers have a large potential for cost reductions. In this paper, we explore pore formation in Si for separating many 18 μm-thick surface-textured layers from a thick wafer with a single etching process. We demonstrate the fabrication and separation of four macroporous Si layers in a single etching step. Generating many instead of single macroporous layers per etching step improves the economics of the macroporous Si process. We present our etching process that maintains the pore pattern defined by photolithography even after etching many absorber and separation layers.Federal Ministry for Environment, Nature Conservation, and Nuclear Safety/FKZ 032514

    Simulation-based roadmap for the integration of poly-silicon on oxide contacts into screen-printed crystalline silicon solar cells

    Get PDF
    We present a simulation-based study for identifying promising cell structures, which integrate poly-Si on oxide junctions into industrial crystalline silicon solar cells. The simulations use best-case measured input parameters to determine efficiency potentials. We also discuss the main challenges of industrially processing these structures. We find that structures based on p-type wafers in which the phosphorus diffusion is replaced by an n-type poly-Si on oxide junction (POLO) in combination with the conventional screen-printed and fired Al contacts show a high efficiency potential. The efficiency gains in comparsion to the 23.7% efficiency simulated for the PERC reference case are 1.0% for the POLO BJ (back junction) structure and 1.8% for the POLO IBC (interdigitated back contact) structure. The POLO BJ and the POLO IBC cells can be processed with lean process flows, which are built on major steps of the PERC process such as the screen-printed Al contacts and the Al2O3/SiN passivation. Cell concepts with contacts using poly-Si for both polarities (POLO 2-concepts) show an even higher efficiency gain potential of 1.3% for a POLO 2 BJ cell and 2.2% for a POLO 2 IBC cell in comparison to PERC. For these structures further research on poly-Si structuring and screen-printing on p-type poly-Si is necessary. © 2021, The Author(s)

    Qualifizierung des Kernmodells DYN3D im Komplex mit dem Störfallcode ATHLET als fortgeschrittenes Werkzeug für die Störfallanalyse von WWER-Reaktoren, Abschlußbericht Teil 1

    Get PDF
    Das Reaktorkernmodell DYN3D mit 3D Neutronenkinetik wurde an den Thermohydraulik-Systemcode ATHLET angekoppelt. Im vorliegenden Bericht werden Arbeiten zur Qualifizierung des gekoppelten Codekomplexes zu einem validierten Hilfsmittel für Störfallablaufanalysen zu Reaktoren des russischen Typs WWER dargestellt. Diese umfaßten im einzelnen: # Beiträge zur Validierung der Einzelcodes ATHLET und DYN3D anhand der Nachrechnung von Experimenten zum Naturumlaufverhalten an thermohydraulischen Versuchsanlagen und der Lösung von Benchmarkaufgaben zu reaktivitätsinduzierten Transienten, Akquisition und Aufbereitung von Meßdaten zu Transienten aus Kernkraftwerken, Validierung von ATHLET-DYN3D anhand der Nachrechnung eines Störfalls mit verzögerter Schnellabschaltung und einer Pumpentransiente in WWER-Reaktoren, eine ergänzende Weiterentwicklung von DYN3D durch Erweiterung der neutronenphysikalischen Datenbasis, Einbau eines verbesserten Modells für die Kühlmittelvermischung, Berücksichtigung der Nachzerfallswärme, Berechnung von Xenon- Oszillationen, Analyse von Frischdampfleckszenarien für eine WWER-440-Anlage mit Annahme des Versagens verschiedener Sicherheitseinrichtungen, Untersuchung verschiedener Modelloptionen. Die Analyse ergab eine mögliche Rekritikalität des abgeschalteten Reaktors bei realistischer Modellierung der Kühlmittelvermischung im Ringspalt und unteren Plenum. Mit der Anwendung des Programmpakets ATHLET-DYN3D in Tschechien, Bulgarien und der Ukraine wurde bereits begonnen. Weiterführende Arbeiten beinhalten die Verifikation von ATHLET-DYN3D mit einer DYN3D-Version für die quadratische Brennelementgeometrie westlicher Druckwasserreaktoren

    For none, one, or two polarities—How do POLO junctions fit best into industrial Si solar cells?

    Get PDF
    We present a systematic study on the benefit of the implementation of poly-Si on oxide (POLO) or related junctions into p-type industrial Si solar cells as compared with the benchmark of Passivated Emitter and Rear Cell (PERC). We assess three aspects: (a) the simulated efficiency potential of representative structures with POLO junctions for none (=PERC+), one, and for two polarities; (b) possible lean process flows for their fabrication; and (c) experimental results on major building blocks. Synergistic efficiency gain analysis reveals that the exclusive suppression of the contact recombination for one polarity by POLO only yields moderate efficiency improvements between 0.23%abs and 0.41%abs as compared with PERC+ because of the remaining recombination paths. This problem is solved in a structure that includes POLO junctions for both polarities (POLO2), for whose realization we propose a lean process flow, and for which we experimentally demonstrate the most important building blocks. However, two experimental challenges—alignment tolerances and screen-print metallization of p+ poly-Si—are unsolved so far and reduced the efficiency of the “real” POLO2 cell as compared with an idealized scenario. As an intermediate step, we therefore work on a POLO IBC cell with POLO junctions for one polarity. It avoids the abovementioned challenges of the POLO2 structure, can be realized within a lean process flow, and has an efficiency benefit of 1.59%abs as compared with PERC—because not only contact recombination is suppressed but also the entire phosphorus emitter is replaced by an n+ POLO junction

    2D/3D Heterostructure for Semitransparent Perovskite Solar Cells with Engineered Bandgap Enables Efficiencies Exceeding 25% in Four‐Terminal Tandems with Silicon and CIGS

    Get PDF
    Wide-bandgap perovskite solar cells (PSCs) with optimal bandgap (Eg_{g}) and high power conversion efficiency (PCE) are key to high-performance perovskite-based tandem photovoltaics. A 2D/3D perovskite heterostructure passivation is employed for double-cation wide-bandgap PSCs with engineered bandgap (1.65 eV ≤ Eg_{g} ≤ 1.85 eV), which results in improved stabilized PCEs and a strong enhancement in open-circuit voltages of around 45 mV compared to reference devices for all investigated bandgaps. Making use of this strategy, semitransparent PSCs with engineered bandgap are developed, which show stabilized PCEs of up to 25.7% and 25.0% in fourterminal perovskite/c-Si and perovskite/CIGS tandem solar cells, respectively. Moreover, comparable tandem PCEs are observed for a broad range of perovskite bandgaps. For the first time, the robustness of the four-terminal tandem configuration with respect to variations in the perovskite bandgap for two state-of-the-art bottom solar cells is experimentally validated

    A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity.

    Get PDF
    Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinatal mortality with full penetrance. Comparative proteomics of cornified envelopes (CEs) from prenatal KtyI(-/-) and KtyII(-/-)(K8) mice demonstrates that absence of KIF causes dysregulation of many CE constituents, including downregulation of desmoglein 1. Despite persistence of loricrin expression and upregulation of many Nrf2 targets, including CE components Sprr2d and Sprr2h, extensive barrier defects persist, identifying keratins as essential CE scaffolds. Furthermore, we show that KIFs control mitochondrial lipid composition and activity in a cell-intrinsic manner. Therefore, our study explains the complexity of keratinopathies accompanied by barrier disorders by linking keratin scaffolds to mitochondria, adhesion, and CE formation

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore