Qucosa – Hemholtz-Zentrum Dresden-Rossendorf
Not a member yet
    787 research outputs found

    Temporal contrast-dependent modeling of laser-driven solids - studying femtosecond-nanometer interactions and probing

    Get PDF
    Establishing precise control over the unique beam parameters of laser-accelerated ions from relativistic ultra-short pulse laser-solid interactions has been a major goal for the past 20 years. While the spatio-temporal coupling of laser-pulse and target parameters create transient phenomena at femtosecond-nanometer scales that are decisive for the acceleration performance, these scales have also largely been inaccessible to experimental observation. Computer simulations of laser-driven plasmas provide valuable insight into the physics at play. Nevertheless, predictive capabilities are still lacking due to the massive computational cost to perform these in 3D at high resolution for extended simulation times. This thesis investigates the optimal acceleration of protons from ultra-thin foils following the interaction with an ultra-short ultra-high intensity laser pulse, including realistic contrast conditions up to a picosecond before the main pulse. Advanced ionization methods implemented into the highly scalable, open-source particle-in-cell code PIConGPU enabled this study. Supporting two experimental campaigns, the new methods led to a deeper understanding of the physics of Laser-Wakefield acceleration and Colloidal Crystal melting, respectively, for they now allowed to explain experimental observations with simulated ionization- and plasma dynamics. Subsequently, explorative 3D3V simulations of enhanced laser-ion acceleration were performed on the Swiss supercomputer Piz Daint. There, the inclusion of realistic laser contrast conditions altered the intra-pulse dynamics of the acceleration process significantly. Contrary to a perfect Gaussian pulse, a better spatio-temporal overlap of the protons with the electron sheath origin allowed for full exploitation of the accelerating potential, leading to higher maximum energies. Adapting well-known analytic models allowed to match the results qualitatively and, in chosen cases, quantitatively. However, despite complex 3D plasma dynamics not being reflected within the 1D models, the upper limit of ion acceleration performance within the TNSA scenario can be predicted remarkably well. Radiation signatures obtained from synthetic diagnostics of electrons, protons, and bremsstrahlung photons show that the target state at maximum laser intensity is encoded, previewing how experiments may gain insight into this previously unobservable time frame. Furthermore, as X-ray Free Electron Laser facilities have only recently begun to allow observations at femtosecond-nanometer scales, benchmarking the physics models for solid-density plasma simulations is now in reach. Finally, this thesis presents the first start-to-end simulations of optical-pump, X-ray-probe laser-solid interactions with the photon scattering code ParaTAXIS. The associated PIC simulations guided the planning and execution of an LCLS experiment, demonstrating the first observation of solid-density plasma distribution driven by near-relativistic short-pulse laser pulses at femtosecond-nanometer resolution

    Annual Report 2022 - Institute of Resource Ecology

    Get PDF
    The Institute of Resource Ecology (IRE) is one of the ten institutes of the Helmholtz-Zentrum Dresden – Rossendorf (HZDR). Our research activities are mainly integrated into the program “Nuclear Waste Management, Safety and Ra-diation Research (NUSAFE)” of the Helmholtz Association (HGF) and focus on the topics “Safety of Nuclear Waste Disposal” and “Safety Research for Nuclear Reactors”. The program NUSAFE, and therefore all work which is done at IRE, belong to the research field “Energy” of the HGF

    Fracture mechanics investigation of reactor pressure vessel steels by means of sub-sized specimens (KLEINPROBEN)

    Get PDF
    The embrittlement of reactor pressure vessel (RPV) steels due to neutron irradiation restricts the operating lifetime of nuclear reactors. The reference temperature 0, obtained from fracture mechanics testing using the Master Curve concept, is a good indicator of the irradiation resistance of a material. The measurement of the shift in 0 after neutron irradiation, which accompanies the embrittlement of the material, using the Master Curve concept, enables the assessment of the reactor materials. In the context of worldwide life time extensions of nuclear power plants, the limited availability of neutron irradiated materials (surveillance materials) is a challenge. Testing of miniaturized 0.16T C(T) specimens manufactured from already tested standard Charpy-sized specimens helps to solve the material shortage problem. In this work, four different reactor pressure vessel steels with different compositions were investigated in the unirradiated and in the neutron-irradiated condition. A total number of 189 mini-C(T) samples were fabricated and tested. An important component of this study is the transferability of fracture mechanics data from mini-C(T) to standard Charpy-sized specimen. Our results demonstrate good agreement of the reference temperatures from the mini-C(T) specimens with those from standard Charpy-sized specimens. RPV steels containing higher Cu and P contents exhibit a higher increase in 0 after irradiation. The fracture surfaces were investigated using SEM in order to record the location of the fracture initiators. The fracture modes were also determined. A large number of test results formed the basis for a censoring probability function, which was used to optimally select the testing temperature in Master Curve testing. The effect of the slow stable crack growth censoring criteria from ASTM E1921 on the determination of 0 was analysed and found to have a minor effect. Our results demonstrate the validity of mini-C(T) specimen testing and confirm the role of the impurity elements Cu and P in neutron embrittlement. We anticipate further research linking microstructure to the fracture properties of materials before and after neutron irradiation and the optimization of Master Curve testing using the results from our statistical analysis

    Primordial nuclides and low-level counting at Felsenkeller

    Get PDF
    Within cosmology, there are two entirely independent pillars which can jointly drive this field towards precision: Astronomical observations of primordial element abundances and the detailed surveying of the cosmic microwave background. However, the comparatively large uncertainty stemming from the nuclear physics input is currently still hindering this effort, i.e. stemming from the 2H(p,γ)3He reaction. An accurate understanding of this reaction is required for precision data on primordial nucleosynthesis and an independent determination of the cosmological baryon density. Elsewhere, our Sun is an exceptional object to study stellar physics in general. While we are now able to measure solar neutrinos live on earth, there is a lack of knowledge regarding theoretical predictions of solar neutrino fluxes due to the limited precision (again) stemming from nuclear reactions, i.e. from the 3He(α,γ)7Be reaction. This thesis sheds light on these two nuclear reactions, which both limit our understanding of the universe. While the investigation of the 2H(p,γ)3He reaction will focus on the determination of its cross- section in the vicinity of the Gamow window for the Big Bang nucleosynthesis, the main aim for the 3He(α,γ)7Be reaction will be a measurement of its γ-ray angular distribution at astrophysically relevant energies. In addition, the installation of an ultra-low background counting setup will be reported which further enables the investigation of the physics of rare events. This is essential for modern nuclear astrophysics, but also relevant for double beta decay physics and the search for dark matter. The presented setup is now the most sensitive in Germany and among the most sensitive ones worldwide

    Annual Report 2022 - Institute of Ion Beam Physics and Materials Research

    Get PDF
    Preface Selected publications Statistics (Publications and patents, Concluded scientific degrees; Appointments and honors; Invited conference contributions, colloquia, lectures and talks; Conferences, workshops, colloquia and seminars; Exchange of researchers; Projects) Doctoral training programme Experimental equipment User facilities and services Organization chart and personne

    Neutronenfluss in Untertagelaboren

    Get PDF
    Das Felsenkellerlabor ist ein neues Untertagelabor im Bereich der nuklearen Astrophysik. Es befindet sich unter 47 m Hornblende-Monzonit Felsgestein im Stollensystem der ehemaligen Dresdner Felsenkellerbrauerei. Im Rahmen dieser Arbeit wird der Neutronenuntergrund in Stollen IV und VIII untersucht. Gewonnene Erkenntnisse aus Stollen IV hatten direkten Einfluss auf die geplanten Abschirmbedingungen fur Stollen VIII. Die Messung wurde mit dem Hensa-Neutronenspektrometer durchgeführt, welches aus polyethylenmoderierten 3He-Zählrohren besteht. Mit Hilfe des Monte-Carlo Programmes Fluka zur Simulation von Teilchentransport werden für das Spektrometer die Neutronen-Ansprechvermögen bestimmt. Fur jeden Messort wird außerdem eine Vorhersage des Neutronenflusses erstellt und die Labore hinsichtlich der beiden Hauptkomponenten aus myoneninduzierten Neutronen und Gesteinsneutronen aus (α,n)-Reaktionen und Spaltprozessen kartografiert. Die verwendeten Mess- und Analysemethoden finden in einer neuen Messung am tiefen Untertagelabor Lsc Canfranc Anwendung. Erstmalig werden im Rahmen dieser Arbeit vorläufige Ergebnisse vorgestellt. Des Weiteren werden Strahlenschutzsimulationen fur das Felsenkellerlabor präsentiert, welche den strahlenschutztechnischen Rahmen für die wissenschaftliche Nutzung definieren. Dabei werden die für den Sicherheitsbericht des Felsenkellers verwendeten Werte auf die Strahlenschutzverordnung 2018 aktualisiert. Letztlich werden Experimente an der Radiofrequenz-Ionenquelle am Felsenkeller vorgestellt, die im Rahmen dieser Arbeit technisch betreut wurde. Dabei werden Langzeitmessungen am übertägigen Teststand am Helmholtz-Zentrum Dresden-Rossendorf präsentiert

    Laser-proton acceleration in the near-critical regime using density tailored cryogenic hydrogen jets

    Get PDF
    Modern particle accelerators are a key component of today’s research landscape and indispensable in industry and medicine. In special application areas, the portfolio of these facilities will be expanded by laser-driven compact plasma accelerators that generate short, high-intensity pulses of ions with unique beam properties. Though intensely explored by the community, scaling the maximum beam energies of laser-driven ion accelerators to the required level is one of the most significant challenges of this field. This endeavor is inherently linked to a fundamental understanding of the underlying acceleration processes. The prospect to effciently increase the beam energy relies on the ability to control the accelerating field structures beyond the well-established acceleration from the stationary target rear side. However, manipulating the interaction in such micrometer-sized accelerators proves to be challenging due to the transient nature of the plasma fields and requires precise tuning of the temporal laser pulse shape and the volumetric density distribution of the plasma target to a level that could so far not be achieved. This thesis investigates laser-proton acceleration using a cryogenic hydrogen target that combines the capabilities of predictive three-dimensional simulation and the in-situ realtime monitoring of the density distribution in the experiment to explore the fundamental physical principles of plasma based acceleration mechanisms. The corresponding experiments were performed at the DRACO laser facility at the Helmholtz-Zentrum Dresden-Rossendorf. The key to the success of these studies was the advancement of the cryogenic target system that generates a self-replenishing pure hydrogen jet. Using a mechanical chopping device, which protects the target system from the disruptive influence originating from the high-intensity interaction, allowed, for the first time, systematic experiments with a large number of laser shots in the harsh environment of the ultra-short pulse DRACO petawatt laser. The performance of a cylindrical hydrogen jet can be substantially optimized by a flexible all-optical tailoring of the target profile. Guided by real-time multi-color probing, the target density, the decisive parameter of the interaction, was scanned over two orders of magnitude allowing the exploration of different advanced acceleration regimes in a controlled manner. This approach led to the experimental realization of proton beams with energies up to 80 MeV and application relevant high particle yield from advanced acceleration mechanisms occurring in near-critical density plasmas, a regime so far mostly investigated in numerical studies. Besides cylindrical jets, the formation of thin hydrogen sheets was studied to gain insight into the fluid and crystallization dynamics that can be used to tailor the target shape for laser-proton acceleration. Using these jets, the onset of target transparency was explored, a regime that promises increased proton energies when optimized. Furthermore, after irradiation of the hydrogen jet with a high-intensity laser pulse, an unexpected axial modulation in the plasma density distribution was observed that can play a role in structuring the proton beam profile. This modulation is caused by instabilities that originate from the laser-plasma interaction, for example due to laser-driven return currents or the plasma expansion dynamics

    Underground measurements and simulations on the muon intensity and 12C-induced nuclear reactions at low energies

    Get PDF
    The reaction 12C(α,γ)16O is of paramount importance for the nucleosynthesis of heavier elements in stars. It takes place during helium burning and determines the abundance of 12C and 16O at the end of this burning stage and therefore influences subsequent nuclear reactions. Currently the cross section at astrophysically relevant energies is not known with satisfactory precision. Due to the low cross section of the reaction, low background, high beam intensities and target thicknesses are necessary for experiments. Therefore a new laboratory hosting a 5 MV ion accelerator, was built in the shallow-underground tunnels of Felsenkeller. The main background component in such laboratories was investigated with a muon telescope in this thesis. It was found, that the rock overburden of about 45 m vertical depth reduces the muons by a factor of about 40 compared to the surface. Furthermore the results of the measurements were compared to a simulation based on the geometry of the facility and showed good agreement. In the next step the accelerator was put into operation. Since the experiment on 12C(α,γ)16O will be done in inverse kinematics, an intense carbon beam is necessary to reach sufficient statistics. For this, the creation and extraction of carbon ions in an external ion source was improved. The external source now provides steady currents of 12C− of above 100 μA. In the following the transmission through the accelerator and the high-energy beamline was tested with a beam restricted in width. The pressure of the gas stripper in the centre of the accelerator and the parameters of different focusing elements after the accelerator were varied. It was found, that for a desired carbon beam energy of below 9 MeV, the 2+ charge state is suited best, where up to 35% of the inserted beam could be transmitted. To ease the planning of future experiments and aid the analysis of the data, the target chamber and two different kinds of cluster detectors were modelled in Geant4. The low-energy region was verified by comparing the simulations to measurements with radioactive calibration sources. Deviations for the detectors were below 10% without target chamber, and up to 30% for individual germanium crystals of the Cluster Detectors with the target chamber. A first test measurement was undertaken to investigate the capabilities of the new laboratory. Solid tantalum targets implanted with 4 He were prepared. An ERDA analysis of the used solid targets showed contaminations with carbon and oxygen. These led to beam-induced background in the region of interest during the irradiation. Then the targets were irradiated with a carbon beam at two different energies. While no clear signal of 12C(α,γ)16O could be observed, the beam could be steered on the target for the whole duration of the beam time spanning five days. Problems during this test, like low beam current, were identified. These could be partly remedied in the scope of this thesis. Suggestions for improvements for a second test run were developed as well

    Charakterisierung eines schnellen Diamantdetektors als Proton-Bunch-Monitor für die Reichweiteverifikation in der Protonentherapie

    Get PDF
    Für die Reichweiteverifikation in der Protonentherapie mittels Prompt Gamma-Ray Timing (PGT) wird ein Proton-Bunch-Monitor (PBM) benötigt, um Phaseninstabilitäten zwischen den Protonen-Mikropulsen und der Radiofrequenz (RF) des Zyklotrons zu eliminieren. In dieser Arbeit wurde demonstriert, dass ein Diamantdetektor diese anspruchsvolle Aufgabe erfüllen kann. Dazu wurde ein polykristalliner Diamantdetektor in diversen Experimenten umfassend charakterisiert. An ELBE wurde eine Zeitauflösung von 82(6) ps für minimal-ionisierende Elektronen bestimmt. Die Auflösung bei der Detektion von Protonen klinischer Energien wurde am OncoRay ermittelt und betrug im Mittel 314(17) ps. Des Weiteren wurden Experimente durchgeführt, die auf die optimale Position des Detektors in der späteren klinischen Anwendung nahe des Degraders schließen lassen. Bei der Anwendung als PBM konnte der Diamantdetektor Phasenverschiebungen zur RF mit einer zeitlichen Auflösung von weniger als 3 ps bei einem Messintervall von 30 ms detektieren. Diese Phasenverschiebungen konnten auch in weiten Teilen durch das Phasenkontrollsignal U_phi, welches im Rahmen dieser Arbeit erstmalig ausgewertet wurde, bestätigt werden. Mit dem Diamantdetektor und U_phi stehen nun zwei PBM zur Verfügung, mit denen ein zentrales Problem bei der klinischen Anwendung von PGT als Reichweite-Verifikationsmethode gelöst werden kann.:1 Motivation 2 Grundlagen der Reichweiteverifikation in der Protonentherapie 2.1 Wechselwirkung von geladenen Teilchen mit Materie 2.2 Tiefendosiskurven 2.3 Praktische Aspekte der Protonentherapie 2.4 Reichweiteunsicherheiten 2.5 Prompt Gamma-Ray Timing (PGT) 2.6 Proton-Bunch-Monitore (PBM) 3 Entwicklung eines Vorverstärkers für den Diamantdetektor 3.1 Untersuchungen mit Generatorsignalen 3.2 Untersuchungen mit radioaktiven Prüfstrahlern 3.3 Ergebnisse 4 Bestimmung der Zeitauflösung am Elektronenstrahl 4.1 Bestimmung der Zeitauflösung eines Detektors mit einer Flugzeitmessung 4.2 Experimenteller Aufbau 4.3 Datenerfassung 4.4 Ergebnisse 4.5 Zusammenfassung 5 Bestimmung der Zeitauflösung am klinischen Protonenstrahl 5.1 Experimentalraum am OncoRay 5.2 Experimenteller Aufbau 5.3 Bestimmung der Zeitauflösung eines Detektors mit einer Koinzidenzmessung 5.4 Ablauf der Messung 5.5 Datenerfassung 5.6 Ergebnisse 5.7 Diskussion 5.8 Zusammenfassung 6 Optimierung der Position des Diamantdetektors am Degrader 6.1 Vorbetrachtungen 6.2 Experimenteller Aufbau 6.3 Ergebnisse 6.4 Diskussion 6.5 Zusammenfassung 7 Einsatz des Diamantdetektors als PBM 7.1 Experimenteller Aufbau 7.2 Datenerfassung 7.3 Ablauf der Messung 7.4 Ergebnisse 7.5 Diskussion und Ausblick 7.6 Zusammenfassung 8 Zusammenfassende Diskussion A Anhang A.1 Produktzertifikat des Diamantdetektors A.2 Zertifikate der radioaktiven Prüfstrahler A.3 Feinzeit-Korrektur beim U100-Spektrometer A.4 Zeitdifferenz-Histogramme für Variante A1 und A2 des Koinzidenzexperiments A.5 Der Diamantdetektor als PBM bei automatischer Phasenanpassung A.6 Der Diamantdetektor als PBM bei manueller Phasenanpassung Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Liste der verwendeten Akronyme Danksagung und Eigenständigkeitserklärun

    Annual Report 2021 - Institute of Ion Beam Physics and Materials Research

    Get PDF
    The year 2021 was still overshadowed by waves of the COVID-19 pandemic, although the arrival of efficient vaccinations together with the experience of the preceding year gave us a certain routine in handling the situation. By now the execution of meetings in an online mode using zoom and similar video conference systems has been recognized as actually being useful in certain situations, e.g. instead of flying across Europe to attend a three-hours meeting, but also to be able to attend seminars of distinguished scientists which otherwise would not be easily accessible. The scientific productivity of the institute has remained on a very high level, counting 190 publications with an unprecedented average impact factor of 8.0. Six outstanding and representative publications are reprinted in this Annual Report. 16 new third-party projects were granted, among them 7 DFG projects, but very remarkably also an EU funded project on nonlinear magnons for reservoir computing with industrial participation of Infineon Technologies Dresden and GlobalFoundries Dresden coordinated by Kathrin Schultheiß of our Institute. The scientific success was also reflected in two HZDR prizes awarded to the members of the Institute: Dr. Katrin Schultheiß received the HZDR Forschungspreis for her work on “Nonlinear magnonics as basis for a spin based neuromorphic computing architecture”, and Dr. Toni Hache was awarded the Doktorandenpreis for his thesis entitled “Frequency control of auto-oscillations of the magnetization in spin Hall nano-oscillators”. Our highly successful theoretician Dr. Arkady Krasheninnikov was quoted as Highly Cited Researcher 2021 by Clarivate. The new 1-MV facility for accelerator mass spectrometry (AMS) has been ordered from NEC (National Electrostatics Corporation). Design of a dedicated building to house the accelerator, the SIMS and including additional chemistry laboratories for enhanced sample preparation capabilities has started and construction is planned to be finished by mid 2023, when the majority of the AMS components are scheduled for delivery. In the course of developing a strategy for the HZDR - HZDR 2030+ Moving Research to the NEXT Level for the NEXT Gens - six research focus areas for our institute were identified. Concerning personalia, it should be mentioned that the long-time head of the spectroscopy department PD Dr. Harald Schneider went into retirement. His successor is Dr. Stephan Winnerl, who has been a key scientist in this department already for two decades. In addition, PD Dr. Sebastian Fähler was hired in the magnetism department who transferred several third-party projects with the associated PhD students to the Institute and strengthens our ties to the High Magnetic Field Laboratory, but also to the Institute of Fluid Dynamics. Finally, we would like to cordially thank all partners, friends, and organizations who supported our progress in 2021. First and foremost we thank the Executive Board of the Helmholtz-Zentrum Dresden-Rossendorf, the Minister of Science and Arts of the Free State of Saxony, and the Ministers of Education and Research, and of Economic Affairs and Climate Action of the Federal Government of Germany. Many partners from universities, industry and research institutes all around the world contributed essentially, and play a crucial role for the further development of the institute. Last but not least, the directors would like to thank all members of our institute for their efforts in these very special times and excellent contributions in 2021

    776

    full texts

    787

    metadata records
    Updated in last 30 days.
    Qucosa – Hemholtz-Zentrum Dresden-Rossendorf
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇