155 research outputs found

    Search for supersymmetry at √s=13 TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector

    Get PDF
    A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons (e or ÎŒ ÎŒ) with the same electric charge or at least three isolated leptons. The search also utilises b-tagged jets, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample of proton–proton collisions at √s=13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 corresponding to a total integrated luminosity of 3.2 fb −1. No significant excess over the Standard Model expectation is observed. The results are interpreted in several simplified supersymmetric models and extend the exclusion limits from previous searches. In the context of exclusive production and simplified decay modes, gluino masses are excluded at 95% 95% confidence level up to 1.1–1.3 TeV for light neutralinos (depending on the decay channel), and bottom squark masses are also excluded up to 540 GeV. In the former scenarios, neutralino masses are also excluded up to 550–850 GeV for gluino masses around 1 TeV

    Search for supersymmetry in final states with two same-sign or three leptons and jets using 36 fb<sup>−1</sup> of √s=13 TeV pp collision data with the ATLAS detector

    Get PDF
    A search for strongly produced supersymmetric particles using signatures involving multiple energetic jets and either two isolated same-sign leptons (e or ÎŒ), or at least three isolated leptons, is presented. The analysis relies on the identification of b-jets and high missing transverse momentum to achieve good sensitivity. A data sample of proton-proton collisions at s=13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to a total integrated luminosity of 36.1 fb −1 , is used for the search. No significant excess over the Standard Model prediction is observed. The results are interpreted in several simplified supersymmetric models featuring R-parity conservation or R-parity violation, extending the exclusion limits from previous searches. In models considering gluino pair production, gluino masses are excluded up to 1.87 TeV at 95% confidence level. When bottom squarks are pair-produced and decay to a chargino and a top quark, models with bottom squark masses below 700 GeV and light neutralinos are excluded at 95% confidence level. In addition, model-independent limits are set on a possible contribution of new phenomena to the signal region yields.[Figure not available: see fulltext.]

    A search for top squarks with R-parity-violating decays to all-hadronic final states with the ATLAS detector in √s = 8 TeV proton-proton collisions

    Get PDF
    A search for the pair production of top squarks, each with R-parity-violating decays into two Standard Model quarks, is performed using 17.4 fb−1 of √s = 8 TeV proton-proton collision data recorded by the ATLAS experiment at the LHC. Each top squark is assumed to decay to a b- and an s-quark, leading to four quarks in the final state. Background discrimination is achieved with the use of b-tagging and selections on the mass and substructure of large-radius jets, providing sensitivity to top squark masses as low as 100 GeV. No evidence of an excess beyond the Standard Model background prediction is observed and top squarks decaying to bÂŻ sÂŻ are excluded for top squark masses in the range 100 ≀ mt≀ 315 GeV at 95% confidence level

    Search for gluinos in events with an isolated lepton, jets and missing transverse momentum at √s=13 TeV with the ATLAS detector

    Get PDF
    The results of a search for gluinos in final states with an isolated electron or muon, multiple jets and large missing transverse momentum using proton–proton collision data at a centre-of-mass energy of √s=13 TeV are presented. The dataset used was recorded in 2015 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 3.2 fb−1. Six signal selections are defined that best exploit the signal characteristics. The data agree with the Standard Model background expectation in all six signal selections, and the largest deviation is a 2.1 standard deviation excess. The results are interpreted in a simplified model where pair-produced gluinos decay via the lightest chargino to the lightest neutralino. In this model, gluinos are excluded up to masses of approximately 1.6 TeV depending on the mass spectrum of the simplified model, thus surpassing the limits of previous searches

    Search for supersymmetry in events with b-tagged jets and missing transverse momentum in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for the supersymmetric partners of the Standard Model bottom and top quarks is presented. The search uses 36.1 fb−1 of pp collision data at √s = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider. Direct production of pairs of bottom and top squarks (b˜1 and t˜1) is searched for in final states with b-tagged jets and missing transverse momentum. Distinctive selections are defined with either no charged leptons (electrons or muons) in the final state, or one charged lepton. The zero-lepton selection targets models in which the b˜1 is the lightest squark and decays via b˜1 → bχ˜01 , where ˜χ01 is the lightest neutralino. The one-lepton final state targets models where bottom or top squarks are produced and can decay into multiple channels, b˜1 → bχ˜01 and b˜1 → tχ˜±1, or t˜1 → tχ˜01 and t˜1→ bχ˜±1, where ˜χ±1 is the lightest chargino and the mass difference mχ˜±1 − mχ˜01 is set to 1 GeV. No excess above the expected Standard Model background is observed. Exclusion limits at 95% confidence level on the mass of third-generation squarks are derived in various supersymmetry-inspired simplified models

    Search for direct top squark pair production in final states with two leptons in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of top squarks in events with two opposite-charge leptons (electrons or muons) are reported, using 36.1 fb−1 of integrated luminosity from proton–proton collisions at √s=13 TeV collected by the ATLAS detector at the Large Hadron Collider. To cover a range of mass differences between the top squark t~ and lighter supersymmetric particles, four possible decay modes of the top squark are targeted with dedicated selections: the decay t~→bχ~1± into a b-quark and the lightest chargino with χ~1±→Wχ~10 , t~→tχ~10 into an on-shell top quark and the lightest neutralino, the three-body decay t~→bWχ~10 and the four-body decay t~→bℓΜχ~10. No significant excess of events is observed above the Standard Model background for any selection, and limits on top squarks are set as a function of the t~ and χ~01 masses. The results exclude at 95% confidence level t~ masses up to about 720 GeV, extending the exclusion region of supersymmetric parameter space covered by previous searches

    Dark matter interpretations of ATLAS searches for the electroweak production of supersymmetric particles in s√=8 s=8 TeV proton-proton collisions

    Get PDF
    A selection of searches by the ATLAS experiment at the LHC for the electroweak production of SUSY particles are used to study their impact on the constraints on dark matter candidates. The searches use 20 fb−1 of proton-proton collision data at s √ =8 s=8 TeV. A likelihood-driven scan of a five-dimensional effective model focusing on the gaugino-higgsino and Higgs sector of the phenomenological minimal supersymmetric Standard Model is performed. This scan uses data from direct dark matter detection experiments, the relic dark matter density and precision flavour physics results. Further constraints from the ATLAS Higgs mass measurement and SUSY searches at LEP are also applied. A subset of models selected from this scan are used to assess the impact of the selected ATLAS searches in this five-dimensional parameter space. These ATLAS searches substantially impact those models for which the mass m(χ ~ 0 1 ) m(χ~10) of the lightest neutralino is less than 65 GeV, excluding 86% of such models. The searches have limited impact on models with larger m(χ ~ 0 1 ) m(χ~10) due to either heavy electroweakinos or compressed mass spectra where the mass splittings between the produced particles and the lightest supersymmetric particle is small

    Measurement of the W±Z boson pair-production cross section in pp collisions at √s=13TeV with the ATLAS detector

    Get PDF
    published_or_final_versio

    Determinants of recovery from post-COVID-19 dyspnoea: analysis of UK prospective cohorts of hospitalised COVID-19 patients and community-based controls

    Get PDF
    Background The risk factors for recovery from COVID-19 dyspnoea are poorly understood. We investigated determinants of recovery from dyspnoea in adults with COVID-19 and compared these to determinants of recovery from non-COVID-19 dyspnoea. Methods We used data from two prospective cohort studies: PHOSP-COVID (patients hospitalised between March 2020 and April 2021 with COVID-19) and COVIDENCE UK (community cohort studied over the same time period). PHOSP-COVID data were collected during hospitalisation and at 5-month and 1-year follow-up visits. COVIDENCE UK data were obtained through baseline and monthly online questionnaires. Dyspnoea was measured in both cohorts with the Medical Research Council Dyspnoea Scale. We used multivariable logistic regression to identify determinants associated with a reduction in dyspnoea between 5-month and 1-year follow-up. Findings We included 990 PHOSP-COVID and 3309 COVIDENCE UK participants. We observed higher odds of improvement between 5-month and 1-year follow-up among PHOSP-COVID participants who were younger (odds ratio 1.02 per year, 95% CI 1.01–1.03), male (1.54, 1.16–2.04), neither obese nor severely obese (1.82, 1.06–3.13 and 4.19, 2.14–8.19, respectively), had no pre-existing anxiety or depression (1.56, 1.09–2.22) or cardiovascular disease (1.33, 1.00–1.79), and shorter hospital admission (1.01 per day, 1.00–1.02). Similar associations were found in those recovering from non-COVID-19 dyspnoea, excluding age (and length of hospital admission). Interpretation Factors associated with dyspnoea recovery at 1-year post-discharge among patients hospitalised with COVID-19 were similar to those among community controls without COVID-19. Funding PHOSP-COVID is supported by a grant from the MRC-UK Research and Innovation and the Department of Health and Social Care through the National Institute for Health Research (NIHR) rapid response panel to tackle COVID-19. The views expressed in the publication are those of the author(s) and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health and Social Care. COVIDENCE UK is supported by the UK Research and Innovation, the National Institute for Health Research, and Barts Charity. The views expressed are those of the authors and not necessarily those of the funders

    Search for high-mass dilepton resonances in pp collisions at s√=8  TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to dielectron or dimuon final states. Results are presented from an analysis of proton-proton (pp) collisions at a center-of-mass energy of 8 TeV corresponding to an integrated luminosity of 20.3  fb−1 in the dimuon channel. A narrow resonance with Standard Model Z couplings to fermions is excluded at 95% confidence level for masses less than 2.79 TeV in the dielectron channel, 2.53 TeV in the dimuon channel, and 2.90 TeV in the two channels combined. Limits on other model interpretations are also presented, including a grand-unification model based on the E6 gauge group, Z∗ bosons, minimal Z' models, a spin-2 graviton excitation from Randall-Sundrum models, quantum black holes, and a minimal walking technicolor model with a composite Higgs boson
    • 

    corecore