60 research outputs found

    Heat adaptation measures in private households: an application and adaptation of the protective action decision model

    Get PDF
    Extreme heatwaves will occur more frequently and with higher intensity in future. Their consequences for human health can be fatal if adaptation measures will not be taken. This study analyses factors related to heat adaptation measures in private households in Germany. During the summer months of 2019, indoor temperatures were measured in over 500 private households in the City of Augsburg, Germany, accompanied by a survey to find out about heat perception and adaptation measures. Hypotheses deducted from the Protective Action Decision Model were tested using one-way ANOVAs, regression analysis and in the end a multiple hierarchical regression model. The results of the hypotheses tested imply an influence of knowledge and heat risk perception of heat adaptation behaviour and an influence of age on heat risk perception. The results of the regression model show an influence of the efficacy-related attribute, of age, indoor temperature, subjective heat stress and health implications to heat adaptation behaviour. In the end, this study proposes adjustments to the PADM according to the results of the hierarchical regression analysis

    Management of tillering in the production of flower stems of heliconia cultivated in pots

    Get PDF
    Potted cultivation of tropical flowers presents good projections for the northeastern region of Brazil; however, it still faces some peculiarities regarding conduction and management. The objective of this study was to evaluate the effect of tillering on the production of Heliconia psittacorum L.f. cv. Red Opal, grown in flowerpot. The experiment was carried out in a protected environment at the Campus of Agricultural Sciences (CCA) of UNIVASF, Petrolina - PE, Brazil, between 2014 and 2016. A completely randomized design was used, with four tiller densities per pot (4, 8, 12 and 16 tillers) and eight replications, totaling 32 plots. The irrigation system was automated and monitored by weighing lysimetry. Were evaluated: efficiency of water use (EUA); harvested flower stems (HC); ratio of harvested stems and number of tillers (HC / NP); number of leaves (NF); duration of vegetative (DFV) and productive phases (DFP); total cycle (CT); floral stem length (CHF); floral stem diameter (DH), bracts length (CB) and equivalent diameter of the collar (DECH). The results were subjected to regression test. The EUA was higher in the density of 16 tillers pot-1; the HC variable presented an increasing linear trend; a decreasing linear trend was detected for HC/NP, NF, DFP, DH, CB and DECH. The number of tillers in the pot does not limit the emission of floral stems. However, the quality of these is inversely proportional to the tiller density.Potted cultivation of tropical flowers presents good projections for the northeastern region of Brazil; however, it still faces some peculiarities regarding conduction and management. The objective of this study was to evaluate the effect of tillering on the production of Heliconia psittacorum L.f. cv. Red Opal, grown in flowerpot. The experiment was carried out in a protected environment at the Campus of Agricultural Sciences (CCA) of UNIVASF, Petrolina - PE, Brazil, between 2014 and 2016. A completely randomized design was used, with four tiller densities per pot (4, 8, 12 and 16 tillers) and eight replications, totaling 32 plots. The irrigation system was automated and monitored by weighing lysimetry. Were evaluated: efficiency of water use (EUA); harvested flower stems (HC); ratio of harvested stems and number of tillers (HC / NP); number of leaves (NF); duration of vegetative (DFV) and productive phases (DFP); total cycle (CT); floral stem length (CHF); floral stem diameter (DH), bracts length (CB) and equivalent diameter of the collar (DECH). The results were subjected to regression test. The EUA was higher in the density of 16 tillers pot-1; the HC variable presented an increasing linear trend; a decreasing linear trend was detected for HC/NP, NF, DFP, DH, CB and DECH. The number of tillers in the pot does not limit the emission of floral stems. However, the quality of these is inversely proportional to the tiller density

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    Get PDF
    Peer reviewe

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe
    corecore