89 research outputs found

    The Effect of High-Fat Diet on Intramyocellular Lipid Content in Healthy Adults: A Systematic Review, Meta-Analysis, and Meta-Regression

    Get PDF
    \ua9 2024 The AuthorsFatty acids are stored within the muscle as intramyocellular lipids (IMCL). Some, but not all, studies indicate that following a high-fat diet (HFD), IMCL may accumulate and affect insulin sensitivity. This systematic review and meta-analysis aimed to quantify the effects of an HFD on IMCL. It also explored the potential modifying effects of HFD fat content and duration, IMCL measurement technique, physical activity status, and the associations of IMCL with insulin sensitivity. Five databases were systematically searched for studies that examined the effect of ≥3 d of HFD (>35% daily energy intake from fat) on IMCL content in healthy individuals. Meta-regressions were used to investigate associations of the HFD total fat content, duration, physical activity status, IMCL measurement technique, and insulin sensitivity with IMCL responses. Changes in IMCL content and insulin sensitivity (assessed by hyperinsulinemic-euglycemic clamp) are presented as standardized mean difference (SMD) using a random effects model with 95% confidence intervals (95% CIs). Nineteen studies were included in the systematic review and 16 in the meta-analysis. IMCL content increased following HFD (SMD = 0.63; 95% CI: 0.31, 0.94, P = 0.001). IMCL accumulation was not influenced by total fat content (P = 0.832) or duration (P = 0.844) of HFD, physical activity status (P = 0.192), or by the IMCL measurement technique (P > 0.05). Insulin sensitivity decreased following HFD (SMD = –0.34; 95% CI: –0.52, –0.16; P = 0.003), but this was not related to the increase in IMCL content following HFD (P = 0.233). Consumption of an HFD (>35% daily energy intake from fat) for ≥3 d significantly increases IMCL content in healthy individuals regardless of HFD total fat content and duration of physical activity status. All IMCL measurement techniques detected the increased IMCL content following HFD. The dissociation between changes in IMCL and insulin sensitivity suggests that other factors may drive HFD-induced impairments in insulin sensitivity in healthy individuals. This trial was registered at PROSPERO as CRD42021257984

    The Effect of High-Fat Diet on Intramyocellular Lipid Content in Healthy Adults: A Systematic Review, Meta-Analysis and Meta-Regression

    Get PDF
    Fatty acids are stored within muscle as intramyocellular lipids (IMCL). Some, but not all, studies indicate that following a high fat diet (HFD), IMCL may accumulate and affect insulin sensitivity. This systematic review and meta-analysis aimed to quantify the effects of a HFD on IMCL. It also explored the potential modifying effects of HFD fat content and duration, IMCL measurement technique, physical activity status, and the associations of IMCL with insulin sensitivity. Five databases were systematically searched for studies that examined the effect of ≥3 days of HFD (>35% daily energy intake from fat) on IMCL content in healthy individuals. Meta-regressions were used to investigate associations of the HFD total fat content, duration, physical activity status, IMCL measurement technique, and insulin sensitivity with IMCL responses. Changes in IMCL content and insulin sensitivity (assessed by hyperinsulinemic-euglycemic clamp) are presented as standardised mean difference (SMD) using a random-effects model with 95% confidence intervals (95% CI). Nineteen studies were included in the systematic review, and 16 in the meta-analysis. IMCL content increased following HFD (SMD=0.63, 95% CI 0.31 to 0.94, p=0.001). IMCL accumulation was not influenced by total fat content (p=0.832) or duration (p=0.844) of HFD, physical activity status (p=0.192) or by the IMCL measurement technique (p>0.05). Insulin sensitivity decreased following HFD (SMD=-0.34, 95% CI -0.52 to -0.16; p=0.003), but this was not related to the increase in IMCL content following HFD (p=0.233). Consumption of a HFD (>35% daily energy intake from fat) for ≥3 days significantly increases IMCL content in healthy individuals regardless of HFD total fat content and duration, or physical activity status. All IMCL measurement techniques detected the increased IMCL content following HFD. The dissociation between changes in IMCL and insulin sensitivity suggests that other factors may drive HFD-induced impairments in insulin sensitivity in healthy individuals. This study was registered with PROSPERO (ref: CRD42021257984)

    Autoregulation in resistance training : addressing the inconsistencies

    Get PDF
    Autoregulation is a process that is used to manipulate training based primarily on the measurement of an individual's performance or their perceived capability to perform. Despite being established as a training framework since the 1940s, there has been limited systematic research investigating its broad utility. Instead, researchers have focused on disparate practices that can be considered specific examples of the broader autoregulation training framework. A primary limitation of previous research includes inconsistent use of key terminology (e.g., adaptation, readiness, fatigue, and response) and associated ambiguity of how to implement different autoregulation strategies. Crucially, this ambiguity in terminology and failure to provide a holistic overview of autoregulation limits the synthesis of existing research findings and their dissemination to practitioners working in both performance and health contexts. Therefore, the purpose of the current review was threefold: first, we provide a broad overview of various autoregulation strategies and their development in both research and practice whilst highlighting the inconsistencies in definitions and terminology that currently exist. Second, we present an overarching conceptual framework that can be used to generate operational definitions and contextualise autoregulation within broader training theory. Finally, we show how previous definitions of autoregulation fit within the proposed framework and provide specific examples of how common practices may be viewed, highlighting their individual subtleties

    Quorum Sensing Signaling Molecules Produced by Reference and Emerging Soft-Rot Bacteria (Dickeya and Pectobacterium spp.)

    Get PDF
    International audienceBACKGROUND: Several small diffusible molecules are involved in bacterial quorum sensing and virulence. The production of autoinducers-1 and -2, quinolone, indole and γ-amino butyrate signaling molecules was investigated in a set of soft-rot bacteria belonging to six Dickeya or Pectobacterium species including recent or emerging potato isolates. METHODOLOGY/PRINCIPAL FINDINGS: Using bacterial biosensors, immunoassay, and chromatographic analysis, we showed that soft-rot bacteria have the common ability to produce transiently during their exponential phase of growth the N-3-oxo-hexanoyl- or the N-3-oxo-octanoyl-l-homoserine lactones and a molecule of the autoinducer-2 family. Dickeya spp. produced in addition the indole-3-acetic acid in tryptophan-rich conditions. All these signaling molecules have been identified for the first time in the novel Dickeya solani species. In contrast, quinolone and γ-amino butyrate signals were not identified and the corresponding synthases are not present in the available genomes of soft-rot bacteria. To determine if the variations of signal production according to growth phase could result from expression modifications of the corresponding synthase gene, the respective mRNA levels were estimated by reverse transcriptase-PCR. While the N-acyl-homoserine lactone production is systematically correlated to the synthase expression, that of the autoinducer-2 follows the expression of an enzyme upstream in the activated methyl cycle and providing its precursor, rather than the expression of its own synthase. CONCLUSIONS/SIGNIFICANCE: Despite sharing the S-adenosylmethionine precursor, no strong link was detected between the production kinetics or metabolic pathways of autoinducers-1 and -2. In contrast, the signaling pathway of autoinducer-2 seems to be switched off by the indole-3-acetic acid pathway under tryptophan control. It therefore appears that the two genera of soft-rot bacteria have similarities but also differences in the mechanisms of communication via the diffusible molecules. Our results designate autoinducer-1 lactones as the main targets for a global biocontrol of soft-rot bacteria communications, including those of emerging isolates

    Vasodilator factors in the systemic and local adaptations to pregnancy

    Get PDF
    We postulate that an orchestrated network composed of various vasodilatory systems participates in the systemic and local hemodynamic adaptations in pregnancy. The temporal patterns of increase in the circulating and urinary levels of five vasodilator factors/systems, prostacyclin, nitric oxide, kallikrein, angiotensin-(1–7) and VEGF, in normal pregnant women and animals, as well as the changes observed in preeclamptic pregnancies support their functional role in maintaining normotension by opposing the vasoconstrictor systems. In addition, the expression of these vasodilators in the different trophoblastic subtypes in various species supports their role in the transformation of the uterine arteries. Moreover, their expression in the fetal endothelium and in the syncytiotrophoblast in humans, rats and guinea-pigs, favour their participation in maintaining the uteroplacental circulation. The findings that sustain the functional associations of the various vasodilators, and their participation by endocrine, paracrine and autocrine regulation of the systemic and local vasoactive changes of pregnancy are abundant and compelling. However, further elucidation of the role of the various players is hampered by methodological problems. Among these difficulties is the complexity of the interactions between the different factors, the likelihood that experimental alterations induced in one system may be compensated by the other players of the network, and the possibility that data obtained by manipulating single factors in vitro or in animal studies may be difficult to translate to the human. In addition, the impossibility of sampling the uteroplacental interface along normal pregnancy precludes obtaining longitudinal profiles of the various players. Nevertheless, the possibility of improving maternal blood pressure regulation, trophoblast invasion and uteroplacental flow by enhancing vasodilation (e.g. L-arginine, NO donors, VEGF transfection) deserves unravelling the intricate association of vasoactive factors and the systemic and local adaptations to pregnancy

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Primary immunodeficiencies associated with eosinophilia

    Full text link

    Evidence-based strength and conditioning in soccer

    No full text
    corecore