326 research outputs found
The development of accounting in UK universities:an oral history
This article reports on the development of the accounting discipline in universities in England and Scotland from the 1960s. Drawing on the oral history narratives of six distinguished accounting scholars who played a significant role in the discipline, this article documents (1) the initial influences on the teaching of accounting in English universities, (2) the different influences on the teaching of accounting in Scottish universities and (3) the influence of US universities and their scholars on the development of academic accounting in the United Kingdom. With a focus on the second wave of accounting professoriate who followed the London School of Economics (LSE) ‘Triumvirate’ of William Baxter, Harold Edey and David Solomons, this article provides first-hand insights into the shape and spread of university accounting education at a crucial stage of its development. This, in turn, develops an understanding of the contemporary academic accounting discipline in the United Kingdom.PostprintPeer reviewe
Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory
The impact of heavy mediators on neutrino oscillations is typically described
by non-standard four-fermion interactions (NSIs) or non-unitarity (NU). We
focus on leptonic dimension-six effective operators which do not produce
charged lepton flavor violation. These operators lead to particular
correlations among neutrino production, propagation, and detection non-standard
effects. We point out that these NSIs and NU phenomenologically lead, in fact,
to very similar effects for a neutrino factory, for completely different
fundamental reasons. We discuss how the parameters and probabilities are
related in this case, and compare the sensitivities. We demonstrate that the
NSIs and NU can, in principle, be distinguished for large enough effects at the
example of non-standard effects in the --sector, which basically
corresponds to differentiating between scalars and fermions as heavy mediators
as leading order effect. However, we find that a near detector at superbeams
could provide very synergistic information, since the correlation between
source and matter NSIs is broken for hadronic neutrino production, while NU is
a fundamental effect present at any experiment.Comment: 32 pages, 5 figures. Final version published in JHEP. v3: Typo in Eq.
(27) correcte
Effects of a simulation-based workshop on nursing students' competence in arterial puncture
Objective: To evaluate whether a short simulation-based workshop in radial artery puncture would improve nursing students’ competence to a level in which they could practise the procedure on a live patient without compromising his safety.
Methods: Quasi-experimental one-group pretest-posttest study with 111 third-year nursing students. A 1.5-hour simulation-based workshop was implemented. This included a video-lecture, live demonstrations, selfdirected simulated practice in dyads and individual intermittent feedback. Participants’ skills, knowledge and
self-efficacy in arterial puncture were measured before and after attending the workshop.
Results: After the intervention, a total of 61.1% of the participants showed the level of competence required to safely practice radial artery puncture on a live patient under supervision.
Conclusion: Effective simulation-based training in arterial puncture for nursing students does not necessarily need to be resource-intensive. Well-planned, evidence-based training sessions using low-tech simulators could help educators to achieve good educational outcomes and promote patient safety
Approaches in biotechnological applications of natural polymers
Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV
Peer reviewe
The therapeutic potential of a series of orally bioavailable anti-angiogenic microtubule disruptors as therapy for hormone-independent prostate and breast cancers
Therapies for hormone-independent prostate and breast cancer are limited, with the effectiveness of the taxanes compromised by toxicity, lack of oral bioavailability and drug resistance. This study aims to identify and characterise new microtubule disruptors, which may have improved efficacy relative to the taxanes in hormone-independent cancer. 2-Methoxy-3-O-sulphamoyl-17β-cyanomethyl-oestra-1,3,5(10)-triene (STX641), 2-methoxy-3-hydroxy-17β-cyanomethyl-oestra-1,3,5(10)-triene (STX640) and 2-methoxyoestradiol-3,17-O,O-bis-sulphamate (STX140) were all potent inhibitors of cell proliferation in a panel of prostate and breast cancer cell lines. STX641 and STX640 significantly inhibited tumour growth in the MDA-MB-231 xenograft model. STX641 inhibited both in vitro and in vivo angiogenesis. Despite good in vivo activity, STX641 was not as potent in vivo as STX140. Therefore, STX140 was evaluated in the prostate hormone-independent PC-3 xenograft model. STX140 had superior efficacy to docetaxel, 2-MeOE2 and bevacizumab. In contrast to vinorelbine, no significant toxicity was observed. Furthermore, STX140 could be dosed daily over a 60-day period leading to tumour regression and complete responses, which were maintained after the cessation of dosing. This study demonstrates that STX641 and STX140 have considerable potential for the treatment of hormone-independent breast and prostate cancer. In contrast to the taxanes, STX140 can be dosed orally, with no toxicity being observed even after prolonged daily dosing
Molecular Characterization of a Novel Intracellular ADP-Ribosyl Cyclase
Background. ADP-ribosyl cyclases are remarkable enzymes capable of catalyzing multiple reactions including the synthesis of the novel and potent intracellular calcium mobilizing messengers, cyclic ADP-ribose and NAADP. Not all ADP-ribosyl cyclases however have been characterized at the molecular level. Moreover, those that have are located predominately at the outer cell surface and thus away from their cytosolic substrates. Methodology/Principal Findings. Here we report the molecular cloning of a novel expanded family of ADP-ribosyl cyclases from the sea urchin, an extensively used model organism for the study of inositol trisphosphate-independent calcium mobilization. We provide evidence that one of the isoforms (SpARC1) is a soluble protein that is targeted exclusively to the endoplasmic reticulum lumen when heterologously expressed. Catalytic activity of the recombinant protein was readily demonstrable in crude cell homogenates, even under conditions where luminal continuity was maintained. Conclusions/Significance. Our data reveal a new intracellular location for ADP-ribosyl cyclases and suggest that production of calcium mobilizing messengers may be compartmentalized
The Forward Physics Facility at the High-Luminosity LHC
High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential
- …
