625 research outputs found

    The Intracranial Aneurysm Gene THSD1 Connects Endosome Dynamics to Nascent Focal Adhesion Assembly

    Get PDF
    Background/aims: We recently discovered that harmful variants in THSD1 (Thrombospondin type-1 domain-containing protein 1) likely cause intracranial aneurysm and subarachnoid hemorrhage in a subset of both familial and sporadic patients with supporting evidence from two vertebrate models. The current study seeks to elucidate how THSD1 and patient-identified variants function molecularly in focal adhesions. Methods: Co-immunostaining and co-immunoprecipitation were performed to define THSD1 subcellular localization and interacting partners. Transient expression of patient-identified THSD1 protein variants and siRNA-mediated loss-of-function THSD1 were used to interrogate gene function in focal adhesion and cell attachment to collagen I in comparison to controls. Results: THSD1 is a novel nascent adhesion protein that co-localizes with several known markers such as FAK, talin, and vinculin, but not with mature adhesion marker zyxin. Furthermore, THSD1 forms a multimeric protein complex with FAK/talin/vinculin, wherein THSD1 promotes talin binding to FAK but not to vinculin, a key step in nascent adhesion assembly. Accordingly, THSD1 promotes mature adhesion formation and cell attachment, while its rare variants identified in aneurysm patients show compromised ability. Interestingly, THSD1 also localizes at different stages of endosomes. Clathrin-mediated but not caveolae-mediated endocytosis pathway is involved in THSD1 intracellular trafficking, which positively regulates THSD1-induced focal adhesion assembly, in contrast to the traditional role of endosomes in termination of integrin signals. Conclusions: The data suggest that THSD1 functions at the interface between endosome dynamics and nascent focal adhesion assembly that is impaired by THSD1 rare variants identified from intracranial aneurysm patients

    Genetic Polymorphisms in CYP2E1: Association with Schizophrenia Susceptibility and Risperidone Response in the Chinese Han Population

    Get PDF
    CYP2E1 is a member of the cytochrome P450 superfamily, which is involved in the metabolism and activation of both endobiotics and xenobiotics. The genetic polymorphisms of CYP2E1 gene (Chromosome 10q26.3, Accession Number NC_000010.10) are reported to be related to the development of several mental diseases and to be involved in the clinical efficacy of some psychiatric medications. We investigated the possible association of CYP2E1 polymorphisms with susceptibility to schizophrenia in the Chinese Han Population as well as the relationship with response to risperidone in schizophrenia patients.In a case-control study, we identified 11 polymorphisms in the 5' flanking region of CYP2E1 in 228 schizophrenia patients and 384 healthy controls of Chinese Han origin. From among the cases, we chose 130 patients who had undergone 8 weeks of risperidone monotherapy to examine the relationship between their response to risperidone and CYP2E1 polymorphisms. Clinical efficacy was assessed using the Brief Psychiatric Rating Scale (BPRS).Statistically significant differences in allele or genotype frequencies were found between cases and controls at rs8192766 (genotype p = 0.0048, permutation p = 0.0483) and rs2070673 (allele: p = 0.0018, permutation p = 0.0199, OR = 1.4528 95%CI = 1.1487-1.8374; genotype: p = 0.0020, permutation p = 0.0225). In addition, a GTCAC haplotype containing 5 SNPs (rs3813867, rs2031920, rs2031921, rs3813870 and rs2031922) was observed to be significantly associated with schizophrenia (p = 7.47E-12, permutation p<0.0001). However, no association was found between CYP2E1 polymorphisms/haplotypes and risperidone response.Our results suggest that CYP2E1 may be a potential risk gene for schizophrenia in the Chinese Han population. However, polymorphisms of the CYP2E1 gene may not contribute significantly to individual differences in the therapeutic efficacy of risperidone. Further studies in larger groups are warranted to confirm our results

    Graphene-Based Nanocomposites for Energy Storage

    Get PDF
    Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed

    The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2,MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. This paper describes the first data release from SDSS-IV, Data Release 13 (DR13), which contains new data, reanalysis of existing data sets and, like all SDSS data releases, is inclusive of previously released data. DR13 makes publicly available 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA,the first data released from this survey. It includes new observations from eBOSS, completing SEQUELS. In addition to targeting galaxies and quasars, SEQUELS also targeted variability-selected objects from TDSS and X-ray selected objects from SPIDERS. DR13 includes new reductions ofthe SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification. DR13 releases new reductions of the APOGEE-1data from SDSS-III, with abundances of elements not previously included and improved stellar parameters for dwarf stars and cooler stars. For the SDSS imaging data, DR13 provides new, more robust and precise photometric calibrations. Several value-added catalogs are being released in tandem with DR13, in particular target catalogs relevant for eBOSS, TDSS, and SPIDERS, and an updated red-clump catalog for APOGEE.This paper describes the location and format of the data now publicly available, as well as providing references to the important technical papers that describe the targeting, observing, and data reduction. The SDSS website, http://www.sdss.org, provides links to the data, tutorials and examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ~6-year operations of SDSS-IV.PostprintPeer reviewe

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore