496 research outputs found

    A particle finite element-based model for droplet spreading analysis

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Mahrous, Elaf, et al. “A Particle Finite Element-Based Model for Droplet Spreading Analysis.” Physics of Fluids, vol. 32, no. 4, American Institute of Physics, Apr. 2020, p. 42106, doi:10.1063/5.0006033. and may be found at https://aip.scitation.org/doi/abs/10.1063/5.0006033A particle finite element method-based model is proposed to analyze droplet dynamics problems, particularly droplet spreading on solid substrates (wetting). The model uses an updated Lagrangian framework to formulate the governing equations of the liquid. The curvature of the liquid surface is tracked accurately using a deforming boundary mesh. In order to predict the spreading rate of the droplet on the solid substrate and track the corresponding contact angle evolution, dissipative forces at the contact line are included in the formulation in addition to the Navier-slip boundary conditions at the solid–liquid interface. The inclusion of these boundary conditions makes it possible to account for the induced Young’s stress at the contact line and for the viscous dissipation along the solid–liquid interfacial region. These are found to be essential to obtain a mesh-independent physical solution. The temporal evolution of the contact angle and the contact line velocity of the proposed model are compared with spreading droplets and micro-sessile droplet injection experiments and are shown to be in good agreement.We are grateful to Dr. Howard Stone, Dr. James Bird, and Dr. Shreyas Mandre for their permission to use Fig. 11(a) published in Ref. 53. We thank the reviewers for their feedback and constructive comments. E.M. is thankful to Dr. Ajay Prasad for the fruitful discussion about the effect of shear stresses on droplet spreading phenomena. E.M. acknowledges the financial support by Jubail University College and the Royal Commission for Jubail and Yanbu of Saudi Arabia. M.S. and A.J. acknowledge financial support from the Natural Science and Engineering Research Council of Canada (NSERC) Collaborative Research and Development, Grant No. NSERC CRDPJ 445887-12, and the NSERC Discovery grant. P.R. was supported by the AMADEUS project (Grant No. PGC2018- 101655-B-I00) funded by the Spanish Ministry of Science, Innovation and Universities. T.C. and A.Z.W. acknowledge financial support by the Fuel Cell Performance and Durability Consortium (FC-PAD) and by the Fuel Cell Technologies Office (FCTO), Office of Energy Efficiency and Renewable Energy (EERE), of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231.Peer ReviewedPostprint (author's final draft

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+→Ό+ÎœW^+ \rightarrow \mu^+\nu and W−→Ό−ΜW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Diffractive Pedagogies- dancing across new materialist imaginaries

    Get PDF
    This paper outlines the affirmative potential of diffractive pedagogies, presenting learning through dance as its central empirical focus. Drawing on data from the university classroom and new materialist scholarship, we consider the problem of learning through the body for university students. We argue that embodied creative processes within pedagogical contexts can liberate those who learn from reproducing, or being reproduced, as the finite set of reductive yet historically determined and governed images, figures or metaphors assigned to them. Building on a feminist investment in the agency of materiality we think through the problem of the body as a site of learning in the university. Learning in higher education is popularly thought as pertaining to the transfer of abstract knowledge, and this process typically occurs in ways that largely ignore the physicality of learning. A pedagogical system which presents repeated structures and patterns of discourse as more valued vehicles for learning than experimentation and creation recognises only preconceived, representational models of thought and expression. This philosophical imaginary therefore requires reconfiguring, to allow for embodied and creative learning processes that are open-ended, nomadic and affirmative

    Searches for exclusive Higgs and Z boson decays into J/ÏˆÎł,ψ(2S)Îł,and ΄(nS)Îł at √s=13 TeV with the ATLAS detector

    Get PDF
    Searches for the exclusive decays of the Higgs and Z bosons into a J/ψ,ψ(2S), or ΄(nS)(n=1,2,3) meson and a photon are performed with a pp collision data sample corresponding to an integrated luminosity of 36.1 fb −1 collected at √s =13 TeV with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above the expected backgrounds, and 95% confidence-level upper limits on the branching fractions of the Higgs boson decays to J/ÏˆÎł, ψ(2S)Îł,and ΄(nS)Îł of 3.5×10 −4, 2.0×10−3,and(4.9,5.9,5.7)×10 −4,respectively, are obtained assuming Standard Model production. The corresponding 95% confidence-level upper limits for the branching fractions of the Z boson decays are 2.3×10 −6, 4.5×10 −6 and (2.8,1.7,4.8)×10 −6, respectively

    Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for new particles decaying into a pair of top quarks is performed using proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of √s=13  TeV corresponding to an integrated luminosity of 36.1  fb−1. Events consistent with top-quark pair production and the fully hadronic decay mode of the top quarks are selected by requiring multiple high transverse momentum jets including those containing b-hadrons. Two analysis techniques, exploiting dedicated top-quark pair reconstruction in different kinematic regimes, are used to optimize the search sensitivity to new hypothetical particles over a wide mass range. The invariant mass distribution of the two reconstructed top-quark candidates is examined for resonant production of new particles with various spins and decay widths. No significant deviation from the Standard Model prediction is observed and limits are set on the production cross-section times branching fraction for new hypothetical Zâ€Č bosons, dark-matter mediators, Kaluza-Klein gravitons and Kaluza-Klein gluons. By comparing with the predicted production cross sections, the Zâ€Č boson in the topcolor-assisted-technicolor model is excluded for masses up to 3.1–3.6 TeV, the dark-matter mediators in a simplified framework are excluded in the mass ranges from 0.8 to 0.9 TeV and from 2.0 to 2.2 TeV, and the Kaluza-Klein gluon is excluded for masses up to 3.4 TeV, depending on the decay widths of the particles

    Search for heavy charged long-lived particles in the ATLAS detector in 36.1 fb− 1 of proton-proton collision data at √s =13 TeV

    Get PDF
    A search for heavy charged long-lived particles is performed using a data sample of 36.1 fb−1 of proton-proton collisions at √s =13 TeV collected by the ATLAS experiment at the Large Hadron Collider. The search is based on observables related to ionization energy loss and time of flight, which are sensitive to the velocity of heavy charged particles traveling significantly slower than the speed of light. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined as model independently as possible, by referencing several representative physics cases that yield long-lived particles within supersymmetric models, such as gluinos/squarks (R-hadrons), charginos and staus. No significant deviations from the expected Standard Model background are observed. Upper limits at 95% confidence level are provided on the production cross sections of long-lived R-hadrons as well as directly pair produced staus and charginos. These results translate into lower limits on the masses of long-lived gluino, sbottom and stop R-hadrons, as well as staus and charginos of 2000, 1250, 1340, 430, and 1090 GeV, respectively

    Search for pair production of heavy vector-like quarks decaying into high-pT W bosons and top quarks in the lepton-plus-jets final state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for the pair production of heavy vector-like B quarks, primarily targeting B quark decays into a W boson and a top quark. The search is based on 36.1 fb −1 of pp collisions at √s = 13 TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Data are analysed in the lepton-plus-jets final state, characterised by a high-transverse-momentum isolated electron or muon, large missing transverse momentum, and multiple jets, of which at least one is b -tagged. No significant deviation from the Standard Model expectation is observed. The 95% confidence level lower limit on the B mass is 1350 GeV assuming a 100% branching ratio to Wt. In the SU(2) singlet scenario, the lower mass limit is 1170 GeV. This search is also sensitive to a heavy vector-like B quark decaying into other final states (Zb and Hb ) and thus mass limits on B production are set as a function of the decay branching ratios. The 100% branching ratio limits are found to be also applicable to heavy vector-like X production, with charge +5/3, that decay into Wt

    Search for pair and single production of vectorlike quarks in final states with at least one Z boson decaying into a pair of electrons or muons in pp collision data collected with the ATLAS detector at √s=13  TeV

    Get PDF
    A search for vectorlike quarks is presented, which targets their decay into a Z boson and a third-generation Standard Model quark. In the case of a vectorlike quark T (B) with charge +2/3e (−1/3e), the decay searched for is T→Zt (B→Zb). Data for this analysis were taken during 2015 and 2016 with the ATLAS detector at the Large Hadron Collider and correspond to an integrated luminosity of 36.1  fb−1 of pp collisions at √s=13  TeV. The final state used is characterized by the presence of b-tagged jets, as well as a Z boson with high transverse momentum, which is reconstructed from a pair of opposite-sign same-flavor leptons. Pair and single production of vectorlike quarks are both taken into account and are each searched for using optimized dileptonic exclusive and trileptonic inclusive event selections. In these selections, the high scalar sum of jet transverse momenta, the presence of high-transverse-momentum large-radius jets, as well as—in the case of the single-production selections—the presence of forward jets are used. No significant excess over the background-only hypothesis is found and exclusion limits at 95% confidence level allow masses of vectorlike quarks of mT>1030  GeV (mT>1210  GeV) and mB>1010  GeV (mB>1140  GeV) in the singlet (doublet) model. In the case of 100% branching ratio for T→Zt (B→Zb), the limits are mT>1340  GeV (mB>1220  GeV). Limits at 95% confidence level are also set on the coupling to Standard Model quarks for given vectorlike quark masses

    Search for supersymmetry in final states with charm jets and missing transverse momentum in 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetric partners of top quarks decaying as t ~ 1 →cχ ~ 0 1 and supersymmetric partners of charm quarks decaying as c ~ 1 →cχ ~ 0 1, where χ ~ 0 1 is the lightest neutralino, is presented. The search uses 36.1 fb −1 pp collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider and is performed in final states with jets identified as containing charm hadrons. Assuming a 100% branching ratio to cχ ~ 0 1, top and charm squarks with masses up to 850 GeV are excluded at 95% confidence level for a massless lightest neutralino. For m t ~ 1 ,c ~ 1 −m χ ~ 0 1 < 100 GeV, top and charm squark masses up to 500 GeV are excluded

    Search for pair production of heavy vectorlike quarks decaying into hadronic final states in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search is presented for the pair production of heavy vectorlike quarks, T¯T or B¯B, that decay into final states with jets and no reconstructed leptons. Jets in the final state are classified using a deep neural network as arising from hadronically decaying W/Z bosons, Higgs bosons, top quarks, or background. The analysis uses data from the ATLAS experiment corresponding to 36.1  fb−1 of proton-proton collisions with a center-of-mass energy of √s=13  TeV delivered by the Large Hadron Collider in 2015 and 2016. No significant deviation from the Standard Model expectation is observed. Results are interpreted assuming the vectorlike quarks decay into a Standard Model boson and a third-generation-quark, T→Wb,Ht,Zt or B→Wt,Hb,Zb, for a variety of branching ratios. At 95% confidence level, the observed (expected) lower limit on the vectorlike B -quark mass for a weak-isospin doublet (B, Y) is 950 (890) GeV, and the lower limits on the masses for the pure decays B→Hb and T→Ht, where these results are strongest, are 1010 (970) GeV and 1010 (1010) GeV, respectively
    • 

    corecore