99 research outputs found

    Receivership Accounting

    Get PDF

    Comparison of foot orthoses made by podiatrists, pedorthists and orthotists regarding plantar pressure reduction in The Netherlands

    Get PDF
    BACKGROUND: There is a need for evidence of clinical effectiveness of foot orthosis therapy. This study evaluated the effect of foot orthoses made by ten podiatrists, ten pedorthists and eleven orthotists on plantar pressure and walking convenience for three patients with metatarsalgia. Aims were to assess differences and variability between and within the disciplines. The relationship between the importance of pressure reduction and the effect on peak pressure was also evaluated. METHODS: Each therapist examined all three patients and was asked to rate the 'importance of pressure reduction' through a visual analogue scale. The orthoses were evaluated twice in two sessions while the patient walked on a treadmill. Plantar pressures were recorded with an in-sole measuring system. Patients scored walking convenience per orthosis. The effects of the orthoses on peak pressure reduction were calculated for the whole plantar surface of the forefoot and six regions: big toe and metatarsal one to five. RESULTS: Within each discipline there was an extensive variation in construction of the orthoses and achieved peak pressure reductions. Pedorthists and orthotists achieved greater maximal peak pressure reductions calculated over the whole forefoot than podiatrists: 960, 1020 and 750 kPa, respectively (p < .001). This was also true for the effect in the regions with the highest baseline peak pressures and walking convenience rated by patients A and B. There was a weak relationship between the 'importance of pressure reduction' and the achieved pressure reduction for orthotists, but no relationship for podiatrists and pedorthotists. CONCLUSION: The large variation for various aspects of foot orthoses therapy raises questions about a consistent use of concepts for pressures management within the professional groups

    Darwin Core: An Evolving Community-Developed Biodiversity Data Standard

    Get PDF
    Biodiversity data derive from myriad sources stored in various formats on many distinct hardware and software platforms. An essential step towards understanding global patterns of biodiversity is to provide a standardized view of these heterogeneous data sources to improve interoperability. Fundamental to this advance are definitions of common terms. This paper describes the evolution and development of Darwin Core, a data standard for publishing and integrating biodiversity information. We focus on the categories of terms that define the standard, differences between simple and relational Darwin Core, how the standard has been implemented, and the community processes that are essential for maintenance and growth of the standard. We present case-study extensions of the Darwin Core into new research communities, including metagenomics and genetic resources. We close by showing how Darwin Core records are integrated to create new knowledge products documenting species distributions and changes due to environmental perturbations

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    Search for Higgs boson decays into a pair of light bosons in the bbμμ final state in pp collision at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for decays of the Higgs boson into a pair of new spin-zero particles, H→aa, where the a-bosons decay into a b-quark pair and a muon pair, is presented. The search uses 36.1fb−1of proton–proton collision data at √s=13 TeV recorded by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the Standard Model prediction is observed. Upper limits at 95% confidence level are placed on the branching ratio (σH/σSM) ×B(H→aa →bbμμ), ranging from 1.2 ×10−4to 8.4 ×10−4in the a-boson mass range of 20–60GeV. Model-independent limits are set on the visible production cross-section times the branching ratio to the bbμμ final state for new physics, σvis(X) ×B(X→bbμμ), ranging from 0.1fb to 0.73fb for mμμ between 18 and 62GeV

    Terrestrische und semiterrestrische Ökosysteme

    Get PDF

    The Physics of the B Factories

    Get PDF
    corecore