11 research outputs found

    Existential Loneliness and end-of-life care: A Systematic Review

    Get PDF
    Contains fulltext : 88662.pdf (publisher's version ) (Closed access)Patients with a life-threatening illness can be confronted with various types of loneliness, one of which is existential loneliness (EL). Since the experience of EL is extremely disruptive, the issue of EL is relevant for the practice of end-of-life care. Still, the literature on EL has generated little discussion and empirical substantiation and has never been systematically reviewed. In order to systematically review the literature, we (1) identified the existential loneliness literature; (2) established an organising framework for the review; (3) conducted a conceptual analysis of existential loneliness; and (4) discussed its relevance for end-of-life care. We found that the EL concept is profoundly unclear. Distinguishing between three dimensions of EL-as a condition, as an experience, and as a process of inner growth-leads to some conceptual clarification. Analysis of these dimensions on the basis of their respective key notions-everpresent, feeling, defence; death, awareness, difficult communication; and inner growth, giving meaning, authenticity-further clarifies the concept. Although none of the key notions are unambiguous, they may function as a starting point for the development of care strategies on EL at the end of life.1 april 201

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Maternal Diabetes Causes Mitochondrial Dysfunction and Meiotic Defects in Murine Oocytes

    No full text
    The adverse effects of maternal diabetes on embryo development and pregnancy outcomes have recently been shown to occur as early as the one-cell zygote stage. The hypothesis of this study was that maternally inherited mitochondria in oocytes from diabetic mice are abnormal and thus responsible in part for this latency of developmental compromise. In ovulated oocytes from diabetic mice, transmission electron microscopy revealed an alteration in mitochondrial ultrastructure, and the quantitative analysis of mitochondrial DNA copy number demonstrated an increase. The levels of ATP and tricarboxylic acid cycle metabolites in diabetic oocytes were markedly reduced compared with controls, suggesting a mitochondrial metabolic dysfunction. Abnormal distribution of mitochondria within maturing oocytes also was seen in diabetic mice. Furthermore, oocytes from diabetic mice displayed a higher frequency of spindle defects and chromosome misalignment in meiosis, resulting in increased aneuploidy rates in ovulated oocytes. Collectively, our results suggest that maternal diabetes results in oocyte defects that are transmitted to the fetus by two routes: first, meiotic spindle and chromatin defects result in nondisjunction leading to embryonic aneuploidy; second, structural and functional abnormalities of oocyte mitochondria, through maternal transmission, provide the embryo with a dysfunctional complement of mitochondria that may be propagated during embryogenesis

    Neural Tube Defects

    No full text

    Mitochondrial physiology: Gnaiger Erich et al ― MitoEAGLE Task Group

    No full text
    corecore