2,529 research outputs found

    Physiology and Pathology of Autoimmune Diseases: Role of CD4+ T cells in Rheumatoid Arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a chronic autoimmune disease characterised by synovial inflammation leading to bone erosion and to systemic manifestations in patients with long RA duration. Although the aetiology is unknown, several observations make currently clear that CD4 T cells play a key role in the pathogenesis: (1) RA associates with certain polymorphisms of HLA class II molecules, and (2) the repertoire and aging of CD4 T cells as well as the intracellular signalling mediating CD4 T cell activation are altered in RA patients. We describe herein the alterations found in CD4 T cells and the role of these cells in the development and progression of RA

    The ciliary machinery is repurposed for T cell immune synapse trafficking of LCK

    Get PDF
    Upon engagement of the T cell receptor with an antigen-presenting cell, LCK initiates TCR signaling by phosphorylating its activation motifs. However, the mechanism of LCK activation specifically at the immune synapse is a major question. We show that phosphorylation of the LCK activating Y394, despite modestly increasing its catalytic rate, dramatically focuses LCK localization to the immune synapse. We describe a trafficking mechanism whereby UNC119A extracts membrane-bound LCK by sequestering the hydrophobic myristoyl group, followed by release at the target membrane under the control of the ciliary ARL3/ARL13B. The UNC119A N terminus acts as a “regulatory arm” by binding the LCK kinase domain, an interaction inhibited by LCK Y394 phosphorylation, thus together with the ARL3/ARL13B machinery ensuring immune synapse focusing of active LCK. We propose that the ciliary machinery has been repurposed by T cells to generate and maintain polarized segregation of signals such as activated LCK at the immune synapse

    Interleukin-15 and interferon-Îł participate in the cross-talk between natural killer and monocytic cells required for tumour necrosis factor production

    Get PDF
    We have characterized the lymphocyte subset and the receptor molecules involved in inducing the secretion of TNF by monocytic cells in vitro. The TNF secreted by monocytic cells was measured when they were co-cultured with either resting or IL-15-stimulated lymphocytes, T cells, B cells or natural killer (NK) cells isolated from the peripheral blood of healthy subjects and from the synovial fluid from patients with inflammatory arthropathies. Co-culture with IL-15-activated peripheral blood or synovial fluid lymphocytes induced TNF production by monocytic cells within 24 hours, an effect that was mainly mediated by NK cells. In turn, monocytic cells induced CD69 expression and IFN-Îł production in NK cells, an effect that was mediated mainly by ÎČ(2 )integrins and membrane-bound IL-15. Furthermore, IFN-Îł increased the production of membrane-bound IL-15 in monocytic cells. Blockade of ÎČ(2 )integrins and membrane-bound IL-15 inhibited TNF production, whereas TNF synthesis increased in the presence of anti-CD48 and anti-CD244 (2B4) monoclonal antibodies. All these findings suggest that the cross-talk between NK cells and monocytes results in the sustained stimulation of TNF production. This phenomenon might be important in the pathogenesis of conditions such as rheumatoid arthritis in which the synthesis of TNF is enhanced

    Mechanical stress confers nuclear and functional changes in derived leukemia cells from persistent confined migration

    Get PDF
    20 p.-8 fig.Nuclear deformability plays a critical role in cell migration. During this process, the remodeling of internal components of the nucleus has a direct impact on DNA damage and cell behavior; however, how persistent migration promotes nuclear changes leading to phenotypical and functional consequences remains poorly understood. Here, we described that the persistent migration through physical barriers was sufficient to promote permanent modifications in migratory-altered cells. We found that derived cells from confined migration showed changes in lamin B1 localization, cell morphology and transcription. Further analysis confirmed that migratory-altered cells showed functional differences in DNA repair, cell response to chemotherapy and cell migration in vivo homing experiments. Experimental modulation of actin polymerization affected the redistribution of lamin B1, and the basal levels of DNA damage in migratory-altered cells. Finally, since major nuclear changes were present in migratory-altered cells, we applied a multidisciplinary biochemical and biophysical approach to identify that confined conditions promoted a different biomechanical response of the nucleus in migratory-altered cells. Our observations suggest that mechanical compression during persistent cell migration has a role in stable nuclear and genomic alterations that might handle the genetic instability and cellular heterogeneity in aging diseases and cancer.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This research was supported by a FPI Scholarship 2018 (Ministerio de Ciencia e InnovaciĂłn/MICINN, Agencia Estatal de InvestigaciĂłn/AEI y Fondo Europeo de Desarrollo Regional/FEDER) to R.G.N.; JAE Intro 2022 (Agencia Estatal Consejo Superior de Investigaciones CientĂ­ficas, ConexiĂłn CSIC Cancer, JAE-ICU-CC-34 and JAEINT22_EX_0263) to G.P.C. and M.P.C.R; grants from the Ministerio de Ciencia e InnovaciĂłn (MICINN) Agencia Estatal de InvestigaciĂłn (AEI) (RTI2018-097267-B-I00), AsociaciĂłn Española Contra el CĂĄncer (LAB AECC, LABAE211656TORR) and Beca FERO (BFERO2021.01) to V.T.; Comunidad de Madrid (Y2018/BIO-5207) and from the Ministerio de Ciencia e InnovaciĂłn (MICINN) Agencia Estatal de InvestigaciĂłn (AEI) (PID2020-115444 GB-I00) to P.R.N; grants from the Ministerio de Ciencia e InnovaciĂłn (MICINN) Agencia Estatal de InvestigaciĂłn (AEI) (TED2021-132296B-C52, PID2019-108391RB-100), and Comunidad de Madrid (Y2018/BIO-5207, S2018/NMT-4389 and REACT-EU program PR38-21–28 ANTICIPA-CM) to F.M.; and grants from 2020 Leonardo Grant for Researchers and Cultural Creators (BBVA Foundation), Ayuda de contrataciĂłn de ayudante de investigaciĂłn PEJ-2020-AI/BMD-19152 (Comunidad de Madrid), Comunidad de Madrid (Y2018/BIO-5207) and the Ministerio de Ciencia e InnovaciĂłn (MICINN) Agencia Estatal de InvestigaciĂłn (AEI) (PID2020-118525RBI00, AEI/10.13039/501100011033) to J.R.M.Peer reviewe

    ATTACK, a novel bispecific T cell-recruiting antibody with trivalent EGFR binding and monovalent CD3 binding for cancer immunotherapy

    Get PDF
    The redirection of T cell activity using bispecific antibodies is one of the most promising cancer immunotherapy approaches currently in development, but it is limited by cytokine storm-related toxicities, as well as the pharmacokinetics and tumor-penetrating capabilities of current bispecific antibody formats. Here, we have engineered the ATTACK (Asymmetric Tandem Trimerbody for T cell Activation and Cancer Killing), a novel T cell-recruiting bispecific antibody which combines three EGFR-binding single-domain antibodies (VHH; clone EgA1) with a single CD3-binding single-chain variable fragment (scFv; clone OKT3) in an intermediate molecular weight package. The two specificities are oriented in opposite directions in order to simultaneously engage cancer cells and T cell effectors, and thereby promote immunological synapse formation. EgA1 ATTACK was expressed as a homogenous, non-aggregating, soluble protein by mammalian cells and demonstrated an enhanced binding to EGFR, but not CD3, when compared to the previously characterized tandem bispecific antibody which has one EgA1 VHH and one OKT3 scFv per molecule. EgA1 ATTACK induced synapse formation and early signaling pathways downstream of TCR engagement at lower concentrations than the tandem VHH-scFv bispecific antibody. Furthermore, it demonstrated extremely potent, dose-dependent cytotoxicity when retargeting human T cells towards EGFR-expressing cells, with an efficacy over 15-fold higher than that of the tandem VHH-scFv bispecific antibody. These results suggest that the ATTACK is an ideal format for the development of the next-generation of T cell-redirecting bispecific antibodies

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+→Ό+ÎœW^+ \rightarrow \mu^+\nu and W−→Ό−ΜW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ÏˆÎł (with J/ψ → ÎŒ + ÎŒ −) where photons are reconstructed from Îł → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    • 

    corecore