1,032 research outputs found
Unitary representations of the Galilean line group: Quantum mechanical principle of equivalence
We present a formalism of Galilean quantum mechanics in non-inertial
reference frames and discuss its implications for the equivalence principle.
This extension of quantum mechanics rests on the Galilean line group, the
semidirect product of the real line and the group of analytic functions from
the real line to the Euclidean group in three dimensions. This group provides
transformations between all inertial and non-inertial reference frames and
contains the Galilei group as a subgroup. We construct a certain class of
unitary representations of the Galilean line group and show that these
representations determine the structure of quantum mechanics in non-inertial
reference frames. Our representations of the Galilean line group contain the
usual unitary projective representations of the Galilei group, but have a more
intricate cocycle structure. The transformation formula for the Hamiltonian
under the Galilean line group shows that in a non-inertial reference frame it
acquires a fictitious potential energy term that is proportional to the
inertial mass, suggesting the equivalence of inertial mass and gravitational
mass in quantum mechanics
Reducing variability in the cost of energy of ocean energy arrays
Variability in the predicted cost of energy of an ocean energy converter array is more substantial than for other forms of energy generation, due to the combined stochastic action of weather conditions and failures. If the variability is great enough, then this may influence future financial decisions. This paper provides the unique contribution of quantifying variability in the predicted cost of energy and introduces a framework for investigating reduction of variability through investment in components. Following review of existing methodologies for parametric analysis of ocean energy array design, the development of the DTOcean software tool is presented. DTOcean can quantify variability by simulating the design, deployment and operation of arrays with higher complexity than previous models, designing sub-systems at component level. A case study of a theoretical floating wave energy converter array is used to demonstrate that the variability in levelised cost of energy (LCOE) can be greatest for the smallest arrays and that investment in improved component reliability can reduce both the variability and most likely value of LCOE. A hypothetical study of improved electrical cables and connectors shows reductions in LCOE up to 2.51% and reductions in the variability of LCOE of over 50%; these minima occur for different combinations of components.The research leading to this publication is part of the DTOceanPlus project which has received funding from the EuropeanUnion's Horizon 2020 research and innovation programme under grant agreement No 785921. Funding was also received from the European Community's Seventh Framework Programme for the DTOcean Project (grant agreement No. 608597). The contribution of Sandia National Laboratories was funded by the U.S. Department of Energy's Water Power Technologies Office. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. The image of the RM3 device, in Fig. 7, was reproduced with the permission of Sandia National Laboratorie
Generation of Large-Scale Vorticity in a Homogeneous Turbulence with a Mean Velocity Shear
An effect of a mean velocity shear on a turbulence and on the effective force
which is determined by the gradient of Reynolds stresses is studied. Generation
of a mean vorticity in a homogeneous incompressible turbulent flow with an
imposed mean velocity shear due to an excitation of a large-scale instability
is found. The instability is caused by a combined effect of the large-scale
shear motions (''skew-induced" deflection of equilibrium mean vorticity) and
''Reynolds stress-induced" generation of perturbations of mean vorticity.
Spatial characteristics, such as the minimum size of the growing perturbations
and the size of perturbations with the maximum growth rate, are determined.
This instability and the dynamics of the mean vorticity are associated with the
Prandtl's turbulent secondary flows. This instability is similar to the
mean-field magnetic dynamo instability. Astrophysical applications of the
obtained results are discussed.Comment: 8 pages, 3 figures, REVTEX4, submitted to Phys. Rev.
Search for Global Dipole Enhancements in the HiRes-I Monocular Data above 10^{18.5} eV
Several proposed source models for Ultra-High Energy Cosmic Rays (UHECRs)
consist of dipole distributions oriented towards major astrophysical landmarks
such as the galactic center, M87, or Centaurus A. We use a comparison between
real data and simulated data to show that the HiRes-I monocular data for
energies above 10^{18.5} eV is, in fact, consistent with an isotropic source
model. We then explore methods to quantify our sensitivity to dipole source
models oriented towards the Galactic Center, M87, and Centaurus A.Comment: 17 pages, 31 figure
Observation of the Ankle and Evidence for a High-Energy Break in the Cosmic Ray Spectrum
We have measured the cosmic ray spectrum at energies above eV using
the two air fluorescence detectors of the High Resolution Fly's Eye experiment
operating in monocular mode. We describe the detector, PMT and atmospheric
calibrations, and the analysis techniques for the two detectors. We fit the
spectrum to models describing galactic and extragalactic sources. Our measured
spectrum gives an observation of a feature known as the ``ankle'' near eV, and strong evidence for a suppression near eV.Comment: 14 pages, 9 figures. To appear in Physics Letters B. Accepted versio
A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses
We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants
Particlization in hybrid models
In hybrid models, which combine hydrodynamical and transport approaches to
describe different stages of heavy-ion collisions, conversion of fluid to
individual particles, particlization, is a non-trivial technical problem. We
describe in detail how to find the particlization hypersurface in a 3+1
dimensional model, and how to sample the particle distributions evaluated using
the Cooper-Frye procedure to create an ensemble of particles as an initial
state for the transport stage. We also discuss the role and magnitude of the
negative contributions in the Cooper-Frye procedure.Comment: 18 pages, 28 figures, EPJA: Topical issue on "Relativistic Hydro- and
Thermodynamics"; version accepted for publication, typos and error in Eq.(1)
corrected, the purpose of sampling and change from UrQMD to fluid clarified,
added discussion why attempts to cancel negative contributions of Cooper-Frye
are not applicable her
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Controls upon the Last Glacial Maximum deglaciation of the northern Uummannaq Ice Stream System, West Greenland
The Uummannaq Ice Stream System (UISS) was a convergent cross-shelf ice stream system that operated in West Greenland during the Last Glacial Maximum (LGM). This paper presents new evidence constraining the geometry and evolution of the northern sector of the UISS and considers the factors controlling its dynamic behaviour. Geomorphological mapping, 21 new terrestrial cosmogenic nuclide (TCN) exposure ages, and radiocarbon dating constrain LGM warm-based ice stream activity in the north of the system up to 1400 m a.s.l. Intervening plateaux areas either remained ice free, or were covered by cold-based icefields. Beyond the inner fjords, topography and bathymetry forced ice flow southwards into the Uummannaq Trough, where it coalesced with ice from the south, and formed the trunk zone of the UISS. Deglaciation of the UISS began at 14.9 cal. ka BP. Rapid retreat from the LGM limit was forced by an increase in air temperatures and rising sea level, enhanced by the bathymetric over-deepening of the Uummannaq and Igdlorssuit Sund troughs. Ice reached the inner fjord confines in the northern Uummannaq area by 11.6 ka and experienced an ice marginal stabilisation in Rink–Karrat Fjord for up to 5 ka. This was a function of topographic constriction and bathymetric shallowing, and occurred despite continued climatic forcing. In the neighbouring Ingia Fjord this did not occur. Following this period of stability, ice within Rink–Karrat Fjord retreated, reaching the present ice margin or beyond after 5 ka. The presence of a major ice stream within a mid-fjord setting, during the mid-Holocene and the Holocene Thermal Maximum (∼11–5 ka) is in direct contrast to records of other ice streams throughout West Greenland, which suggest ice had retreated beyond its present margin by 9–7 ka. This demonstrates the potential importance of topographic control on calving margin stability, and its ability to override climatic forcing
- …
