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Introduction

With new genetic approaches (e.g., the use of model plant
systems and plant mutants), significant advances have been
made in plant physiology, especially in the fields of ethylene
(its biosynthesis, signal transduction pathway, and functions)
and mutualistic symbioses (nodulation and arbuscular my-
corrhizae (AM) formation). In the last decade, new model
plant systems have been developed to study these plant–
microbe interactions. Medicago truncatula (barrel medic)
was proposed as such by Barker et al. (1990) because it pos-
sessed numerous properties that make it the ideal tool for
plant physiology; it has a short generation time, high yields,
and a relatively small genome and is easily transformable.
Later, Sagan et al. (1995) screened nodulation lines of this
species for their endomycorrhizal characters. Another model
plant also frequently used to study the two symbioses is Lo-
tus japonicus; nodulation mutants of this species have been
developed by Szczyglowski et al. (1998) and Schauser et al.
(1998). Some of these were further screened for alterations
in AM formation (Wegel et al. 1998; Bonfante et al. 2000).
These model plants have proven to be invaluable for the in-
depth study of the symbioses. Unfortunately, these species
are of no major agricultural use, so the need to study plants
of more economical importance is absolute. Several crop
plants are indeed available for study (Table 1); these have
been mutagenized and screened for nodulation phenotypes.
Our knowledge of their genetics and physiology in addition
to their availability makes them priceless (e.g., Sprent 2002).
In this review, we draw conclusions from both model and
nonmodel plants alike and attempt to organize the develop-
mental steps that ultimately are responsible for the produc-
tion of nodules and AM. In addition, we propose a role for
the hormone ethylene in the establishment of these two sym-
biotic structures.

Mutualistic symbioses

In the last decade, numerous reviews have been written on
the development of the structures resulting from the interac-
tions between rhizobia and legumes (i.e., nodules) and be-
tween AM fungi and plants. Readers are referred to Brewin
(1991, 1998), Hirsch (1992), and Hadri and Bisseling (1998)
for extensive reviews of nodule organogenesis and Peterson
and Farquhar (1994), Bonfante and Perotto (1995), and
Harrison (1999) for mycorrhizae formation. The use of mu-
tants has allowed researchers to dissect in detail the morpho-
genesis of the symbiotic structures, unraveling new steps in
the process. Throughout this review, we have relied heavily
on the rich pool of existing mutants of Pisum sativum L.
(pea). In the text, these mutants are designated only by their
sym genes; for further details on their phenotypes, the reader
is directed to the references listed in Table 2.

In this review, we present working models in an attempt
to outline the chronological steps required for the organo-
genesis of a nodule (Fig. 1) and that of AM (Fig. 2). We
have tried to dissect these two symbioses in as many well-
defined steps as possible but still have kept our diagrams
simple to discuss the effects of ethylene on the establishment
and development of both symbioses.

Nodule organogenesis
For the study of nodule organogenesis, we focused on in-

determinate nodules, since it has been suggested that this
pattern of development could be regarded as the “ground
state” of nodulation (Hirsch and LaRue 1997). We chose
to depict the process as more or less linear, with a portion
comprising two parallel branches that eventually rejoin; one
branch pertains only to events occurring in the epidermis
whereas the other involves only the cortex (Fig. 1). Where
the branching actually takes place is difficult to say; it is
possible that the discovery and study of new mutants
will define more precisely this important point. To draw
the sequence of events, we use plant mutants to which the
principle of “first morphological abnormality observed”
(Morzhina et al. 2000) was applied; this principle states that
if a defect exists in one step, the following stage in the
development of the symbiosis does not occur.

To dissect more easily the nodulation developmental
program, we divide it into three broad sections: preinfection
stages, infection stages, and postinfection stages. Not included
in our model are the steps characterizing the function or phys-
iology (e.g., nitrogen fixation) of the nodule, i.e., the steps
found after nodule persistence. It is worthwhile to note that all
preinfection stages can be triggered by Nod factors (NF) in
the absence of rhizobia; NF are complex molecules made by
flavonoid-activated bacteria (e.g., Cohn et al. 1997).

Preinfection stages

Pericycle
In Medicago sp., cells of the pericycle (the outermost

layer of the vascular tissue) are among the first to respond
to NF by undergoing microtubular cytoskeleton (Csk) rear-
rangement (Timmers et al. 1999). In pea, rhizobia activate
the early nodulin (ENOD) gene PsENOD40 in the pericycle
cells (Fig. 1) closest to the nodule progenitor cells (e.g.,
Yang et al. 1993). Interestingly, this gene is also expressed
in that tissue upon treatment of transgenic Medicago sativa
(alfalfa) by cytokinins (plant hormones involved in cell divi-
sion; Fang and Hirsch 1998). Also, transgenic Nicotiana
tabacum (tobacco) protoplasts expressing ENOD40 exhibit
an altered sensitivity to auxin (van de Sande et al. 1996).
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Common name Latin name Reference(s)

Pea Pisum sativum Engvild 1987; Kneen and
LaRue 1988; Duc and
Messager 1989;
Borisov et al. 1992

Soybean Glycine max Carroll et al. 1986;
Gremaud and Harper
1989; Schmidt et al. 1999

White bean Phaseolus vulgaris Park and Buttery 1988
Sweetclover Melilotus alba

annua
Kneen and LaRue 1988

Chickpea Cicer arietinum Paruvangada and Davis
1999

Alfalfa Medicago sativa Barnes et al. 1988

Table 1. Crop legumes that have been mutagenized and have
mutants available for studying symbioses.

     

     
   



The product of the ENOD40 gene can be considered as a
plant growth regulator that modulates the sensitivity of the
plant to auxin (Cohn et al. 1997) and possibly to cytokinin.
Charon et al. (1997) suggested that ENOD40 diffuses from
the pericycle to the inner cortical cells, altering their auxin–
cytokinin balance and inducing mitoses.

Epidermis
Epidermal cells, especially root hairs (RH), also respond

to the NF; the tips of the hairs swell, giving them a spatu-
lated appearance. This alteration could be explained by a
change in their osmotic pressure (Fig. 1); it has been shown
that RH swell at their tips when their turgor pressure is
increased, i.e., when the osmotic pressure of the external
medium decreases (Ekdahl 1953). This step allows us to dif-
ferentiate the sym8 and sym19 nonnodulating pea mutants

(Figs. 1 and 3); inoculated sym8 mutants do not exhibit
RH deformations (Markwei and LaRue 1992) whereas inoc-
ulated sym19 mutants have spatulated hairs (Sagan et al.
1994). As these physical changes occur at the RH tip,
numerous chemical adjustments take place on either side of
the RH plasma membrane. Not indicated on the model are
electrophysiological changes such as membrane depolariza-
tion and alkalinization measured in alfalfa RH tips by Felle
et al. (1995) and Felle et al. (1996), respectively. However,
the first event to be detected is a calcium influx at the RH
tip, an event recently reviewed extensively (Cardenas et al.
2000; Lhuissier et al. 2001). Independent of these changes in
calcium concentrations is a process known as calcium spik-
ing (Fig. 1) described by Walker et al. (2000) as the repeat
of sharp momentary oscillations in intracellular calcium lev-
els. This phenomenon is quite localized and appears to be
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Pea mutant Locus
Nod and (or)
myc phenotype Nodulation reference Mycorrhiza reference

Afghanistan “Afg” Strain specific Le Gal and Hobbs 1989
sym2A Strain specific Geurts et al. 1997

JI1357 sym3 Nod+fix– Borisov et al. 2000
E2 sym5 Low nod/myc++ Guinel and LaRue 1991 C. Albrecht (personal

communication)
E69 sym7 Nod– Kneen et al. 1994
R25 sym8 Nod–/myc– Markwei and LaRue 1992 Balaji et al. 1994
R72, P54 sym9 Nod–/myc– Markwei and LaRue 1992 Balaji et al. 1994
P56 sym10 Nod–/myc+ Sagan et al. 1994 Duc et al. 1989
K5 sym12 Low nod Postma et al. 1988
E135F sym13 Nod+fix–/myc+ Kneen et al. 1990 Balaji et al. 1994
SGENod–-2 sym14 Nod– Tsyganov et al. 1999
R50 sym16 Low nod/myc+ Guinel and Sloetjes 2000 R. Landewert, R.L. Peterson,

and F.C. Guinel (data not
shown)

R82 sym17 Low nod Lee and LaRue 1992a
P6, P55 sym19 Nod–/myc– Sagan et al. 1994 Duc et al. 1989
E132 sym21 Low nod Markwei and LaRue 1997
P61 sym25 Nod+fix– Duc et al. 1989
P63 sym26 Nod+fix– Duc et al. 1989
P12 sym27 Nod+fix– Duc et al. 1989
P53 sym30 Nod–/myc– Sagan et al. 1994 Duc et al. 1989
Sprint-2Fix– sym31 Nod+fix– Borisov et al. 1997
RisFixL sym32 Nod+fix– Engvild 1987, as cited in

Borisov et al. 2000
SGEFix–-2 sym33 Nod+fix– Tsyganov et al. 1998
RisNod1 sym34 Nod– Borisov et al. 2000
SGENod–-4 sym35 Nod–/myc+ Tsyganov et al. 1999 Madsen et al. 2001
RisNod24 sym36 Nod–/myc–2 Engvild 1987, as cited in

Borisov et al. 2000
Gianinazzi-Pearson et al.

1991
RisNod4 sym37 Nod– Engvild 1987, as cited in

Borisov et al. 2000
RisFixF/SGENod–-4 sym38 Nod– Engvild 1987, as cited in

Borisov et al. 2000
P57 sym39 Low nod Sagan et al. 1994
SGEFix–-1 sym40 Nod+fix– Tsyganov et al. 1998
RisFixA sym41 Nod+fix– Engvild 1987, as cited in

Borisov et al. 2000
E107 brz Low nod/low myc Guinel and LaRue 1992 Resendes et al. 2001

Table 2. List of pea mutants, their mutated loci, and their symbiotic phenotypes.

     

     
   









mediate specifically the response to the Rhizobium signals
(our epidermal program) and the other part encompassing
the entire nodule formation (our cortical program).

Recently, two groups focused their work on the entry per
se of the rhizobia. Tsyganov et al. (2002) and Catoira et al.
(2001) included an additional step to this already complex
process, that of colonization of curled RH pockets (Fig. 1);
however, the two groups disagree on the temporal location
of this step. The question is whether the RH forms the curl
on its own (Tsyganov et al. 2002) or whether the rhizobia
act physically on the host root to form the curl (Catoira et al.
2001). If the former is true, a bacterial colony would estab-
lish itself in the chamber formed by the curl; the colony,
while growing, would put pressure on the host wall, partially
breaking it, and enter into the cell. If the latter occurs,
the bacteria would play an active role in directing the curl.
Catoira et al. (2001) proposed that, once the bacteria are in
contact with the RH, one microcolony takes over and directs
the rearrangement of the microtubules in that cell, in effect
directing the growth of the curl. Emons and Mulder (2000)
hypothesized that at the site of rhizobial attachment, RH tip
growth is stimulated and takes a new direction. Because of
the continuous release of NF and the proliferation of the
rhizobia over time, the change of direction is constantly
occurring; in effect, the orientation of the growth rotates and
a curl forms, entrapping the bacterial colony.

Although the mechanism by which the rhizobia enter the
RH is not entirely understood, enzymatic digestion appears to
be prevalent, at least in white clover (Mateos et al. 2001). As
the IT is initiated, Csk rearrangement leads to the nucleus
migrating to the base of the RH (Timmers et al. 1999); the IT
is now unimpeded to grow towards the cortex (Fig. 1). For the
IT to form and expand, the plant cell has to coordinate secre-
tion of matrix, plasma membrane, and cell wall components
(Rae et al. 1992). The breaching of the outer cortex by the IT
appears to be one of the most important checkpoints in the
development of this symbiosis (e.g., Guinel and LaRue 1992;
Resendes et al. 2001) (also see below).

Postinfection stages
The late stages of our model have been described by

Brewin (1998), Timmers et al. (1998), Borisov et al. (2000),
and Voroshilova et al. (2001). Upon entering the cortex, the
IT follows the path delineated by the PIT (Fig. 1); it passes
from cell to cell by degrading the walls of the cortical cells.
van Spronsen et al. (1994) proposed that this wall degrada-
tion is a two-step process; whereas NF predispose the peri-
clinal walls to breaching, the rhizobia within the IT are
required for the breakdown of the wall to occur. Simulta-
neously with IT growth in the outer cortex, inner cortical
cells continue to divide to form the NP. Through the orga-
nized activity of a meristem (Fig. 1), the nodule grows to
reach its mature size at which time several histological zones
are distinguished (Vasse et al. 1990).

Once the IT reaches the infection zone (Vasse et al. 1990),
the rhizobia enter the cell by endocytosis in an infection
droplet surrounded by a symbiosome membrane (Fig. 1)
(Brewin 1998). Recently infected cells undergo reorganiza-
tion of their microtubules, probably in preparation for the
arrival of the microsymbionts (Davidson and Newcomb

2001b); the cells increase in size and their DNA endore-
duplicates (Timmers et al. 1998). Bacteria, in the droplet,
undergo differentiation and become bacteroids (Fig. 1). The
bacteroids divide in the droplet as the symbiosome mem-
brane is synthesized; this ensures that the number of bac-
teroids per symbiosome, dependent on the plant species,
remains constant (Brewin 1998). The bacteroids are now
able to undertake nitrogen fixation once they have adapted
to the host cytoplasmic environment. In older infected cells,
changes to the actin microfilaments of the host cells have
also been observed (Davidson and Newcomb 2001a).

A few imperfections of our model
Some processes, such as nodulin expression (Pawlowski

1997) and hormonal alterations, occur throughout nodule
development and therefore cannot be placed accurately on
our model. In fact, these two processes appear to be linked
and the expression of some ENOD genes follows alterations
in hormonal levels. For example, cytokinins act on
MsEnod12A expressed in alfalfa (Bauer et al. 1996) and on
SrEnod2 expressed in Sesbania rostrata (Dehio and de
Bruijn 1992).

Although our model emphasizes the existence of two
distinct developmental programs, these are not uncoupled
(Figs. 1 and 3). For a proper indeterminate nodule to be
established, not only must signal(s) be transduced linearly
along the two programs (our model) but additional signals
must be sent from the IT tip, where rhizobia are present, to
the NP (and (or) vice versa) (Timmers et al. 1999). Exactly
what happens, with respect to communication, between the
IT in the outer cortex and the NP in the inner cortex is still
a mystery. Should we assume that NF are continuously
synthesized by the rhizobia, even in planta (Timmers et al.
1998), and that they have a different function depending on
their locale of production? Or should we consider the NF as
being mainly extraradical molecules that, upon their binding,
send signals triggering different events along a pathway
(e.g., Mylona et al. 1995)?

The pea mutant sym36 (DK24; Sagan et al. 1994) exem-
plifies the molecular dialogue existing between the two
branches. sym36 is characterized by an abnormally large IT
that aborts before reaching the base of the epidermal cell;
furthermore, few cell division centres are observed in the
inner cortex and these do not proceed to form an NP (Sagan
et al. 1994). The nodulation phenotype of sym36 could be
explained by a lack of communication between the epider-
mal and cortical programs (Fig. 3); one of the required sig-
nals could be missing or not perceived by one (or both)
region(s). Not surprisingly, the steps involving communica-
tion between the two programs all occur once rhizobial
infection per se has begun (Fig. 3), suggesting that for the
two programs to work together, bacteria have to be present;
the bacterial signals, e.g., internalized NF (Timmers et al.
1998), probably make the link between the two zones.

Epidermal and cortical programs of nodulation

Independence of the programs
The epidermal and cortical developmental programs, al-

though not uncoupled from each other, are quite independ-
ent. That the two programs are distinct is emphasized by the
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genesis evolved independently from one another. Because
NP are present in most rhizobia–legume associations
(Fig. 4), and because spontaneous nodules could have been
useful to the plant as storage organs (Hirsch and LaRue
1997), it is highly probable that the nodule architecture was
in place early in the evolution of legumes, possibly before
rhizobia began to associate with them. Thus, the cortical
program may have evolved before the epidermal program. If
this were the case, it would explain why the mechanisms by
which rhizobia enter into the root vary so greatly among
legume species whereas the cortical program does not
appear to be so flexible (Fig. 4). In those species where the
cortical program (with all its hormonal controls) was already
in place in the root, the bacteria had simply to develop a
way to breach the epidermis. Once the communication was
properly established between the two programs, the simple
nitrogen-fixing IT (Fig. 4B) could have evolved to a highly
efficient nitrogen-fixing organ (Fig. 4G).

Infection is proposed to have evolved independently of
nodule formation (Hirsch and LaRue 1997; Parniske 2000);
how can this hypothesis be reconciled with the two develop-
mental programs occurring in indeterminate nodule forma-
tion? What is referred to as nodule formation appears to
correlate with the cortical program; as for the infection and
its rhizobia, they deal primarily with the epidermis (Fig. 4),
which is logical because the microsymbionts will first en-
counter the root surface.

Examples illustrating the coevolution of the two programs
In Gleditsia triancanthos (honey locust), bacterial infec-

tion seems to use only the epidermal program (Fig. 4B); the
symbiosis does not appear to require the formation of an NP.
The bacteria enter the roots via an RH through an IT-like
structure (Hirsch and LaRue 1997). They never leave this
structure where nitrogen is thought to be fixed; no NP or
nodule is ever observed (de Faria et al. 1999, as cited in
Parniske 2000).

Rhizobia can also penetrate into the cortex in between two
epidermal cells via the anticlinal walls, as in Mimosa
scabrella (de Faria et al. 1988) (Fig. 4C). Further penetration
occurs through intercellular spaces and primary cell walls;
but when close to the NP, the infection becomes intracellular
with the bacteria in thread-like structures (Sprent and Raven
1992). Nodules are initiated as in the case of the indetermi-
nate nodules, i.e., in the inner cortex (de Faria et al. 1988).

In Neptunia natans, rhizobial entry is through a crack
formed by the emergence of a lateral root (Subba-Rao et al.
1995) (Fig. 4D). As the rhizobia enter through the epider-
mis, an NP initiates deep in the lateral cortex. The rhizobia
follow an intercellular path, at first quite large but that nar-
rows as the rhizobia approach the NP. However, when the
rhizobia enter the nodule tissue, it is via an IT (Fig. 4D);
once in the nodule cells, the fate of the bacteria is similar to
that of rhizobia infecting pea (Subba-Rao et al. 1995).

In Arachis hypogaea (peanut), the rhizobia also enter
through spaces occurring between epidermal cells (Boogerd
and van Rossum 1997) (Fig. 4E). The nodules develop at
lateral root junctions where axillary RH formed; these do
not appear per se to play a role in the infection, but their
enlarged bases are required (Boogerd and van Rossum
1997). No IT are observed; the bacteria progress through the

cortex by gradually degrading the cells they invade. Nodule
initials divide repeatedly in the lateral root cortex to form a
nodule.

In Chamaecytisus proliferus (tagasaste), the rhizobia enter
deformed RH, travel within an IT (Fig. 4F), and predispose
the inner cortical cells to form an NP (Vega-Hernandez et al.
2001). The growth of the IT stops within the RH but the
rhizobia then shift to a crack-entry mode to access the cortex
and the NP. They reach this zone via an intercellular route,
finally entering the dividing cells by altering their walls
(Vega-Hernandez et al. 2001). Nodules are not restricted to
lateral root axils but develop along the lateral roots as in
pea (Vega-Hernandez et al. 2001). This association between
tagasaste and Bradyrhizobium sp. is strong evidence for an
intermediary stage between the two developmental pro-
grams. The bacteria try one method of epidermal entry, trig-
gering the cortical events, but switch to another mechanism
to breach the inner epidermal checkpoint. Finally, rhizobia
can penetrate via IT in the RH, with subsequent formation of
an NP in the inner cortex developing into a nodule (in pea;
Fig. 4G) (e.g., Guinel and LaRue 1991).

Mode of entry determined by the plants
We believe that the macrosymbiont is the main actor in

the epidermal entry play because a single type of bacterium
can use different mechanisms to enter into different species.
For example, one rhizobial strain can enter Vigna
unguiculata (cowpea) through RH but peanut through crack
entry (Sen and Weaver 1984); this is reminiscent of what
occurs in mycorrhizae formation where an AM fungus can
form either a Paris-type or an Arum-type pattern of coloni-
zation depending on the host (Smith and Read 1997). In
the latter, however, the “choice” appears to be made at the
epidermis–cortex interface.

Ultimately, the mechanism of entry depends on the chem-
istry of the epidermal wall. Mort and Grover (1988), study-
ing the sugar composition of RH cell walls, demonstrated
that among legumes, the RH carbohydrate composition did
not differ much; on the contrary, there was a large variation
when legumes were compared with nonlegumes. This differ-
ence among families was further emphasized by Matthysse
and McMahan (2001) who studied the attachment of
Agrobacterium tumefaciens to RH. AttR mutants of
Agrobacterium tumefaciens are able to differentiate RH of
nonlegumes from those of legumes; the bacterium is unable
to attach to the former whereas it binds to the latter
(Matthysse and McMahan 2001). Since Agrobacterium is
closely related to Rhizobium (Young and Johnston 1989), es-
pecially Rhizobium leguminosarum and Rhizobium meliloti,
it is plausible to assign a similar behaviour to Rhizobium.
These differences in bacterial behaviour probably rely on
differences in wall chemistry.

The legumes studied by Mort and Grover (1988) all be-
long to the Papilionoideae subfamily; it would be now very
interesting to study the composition of the epidermal walls
of more primitive species of legumes such as Gleditsia and
Mimosa. It is probable that differences exist among species
of the three subfamilies. All in all, it is intriguing that during
evolution, rhizobia did not choose the path of least resis-
tance for root entry (i.e., crack entry). We propose that the
plant did not let them take that path; it was to the advantage
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of the plant to establish clear checkpoints, each with a tight
control. We hypothesize later that cortical entry is under the
control of the hormone ethylene.

AM formation
Two main patterns of cortical tissue colonization (Paris-

and Arum-type) are possible depending on the host (Gallaud
1905; Smith and Smith 1997) and (or) fungal species
(Cavagnaro et al. 2001) involved in a particular association.
The Paris-type morphology is characterized by intracellular
progression of fungal hyphae towards the inner cortical tis-
sue and the formation of hyphal coils and arbusculate coils
(i.e., coils with intercalary fine branches). In contrast, the
Arum-type pattern involves both intra- and intercellular
hyphal growth towards the inner cortex and along the longi-
tudinal axis of the root with hyphal coils being less promi-
nent and terminal arbuscules being formed on trunk hyphae.
For the purpose of this review, we will discuss only the
Arum-type morphology because it is this pattern that gener-
ally occurs in crop plants (Smith and Read 1997). We based
our AM development model (Fig. 2) on our nodule organo-
genesis model and on the particular defects exhibited by AM
formation mutants, which have been compiled in a very
useful table by Marsh and Shultze (2001). There is strong
indirect evidence that nodulation and AM formation share at
least some steps of the signal transduction pathway resulting
in the development of symbiotic structures (Duc et al. 1989;
van Rhijn et al. 1997; Hirsch and Kapulnik 1998; Albrecht
et al. 1999).

Our discussion of AM formation is divided into three
broad sections: precolonization stages, colonization stages,
and postcolonization stages. These sections correspond
loosely to the three main regulatory stages of the coloniza-
tion process presented by Stougaard (2001): epidermal pene-
tration, colonization of the cortex, and arbuscule formation.
However, from our knowledge of nodulation mutants, we
believe that two more stages should be added, that of exiting
the epidermis and that of arbuscule development. As in the
nodulation section, here, we are not considering the events
regulating arbuscule function.

Precolonization stages
For AM to form, a recognition event involving the

exchange of signals must take place between the symbionts
(Peterson and Farquhar 1994). Although its details are
unclear, this event results in the host identifying the AM
fungus as a nonpathogen and in the AM fungal hyphae
branching profusely (Fig. 2) and irregularly, presumably to
increase the chance of contact with the root. Whereas the
former response suggests the involvement of an AM fungal
factor (Fig. 2), the latter indicates that a host root factor is
also involved. Whatever the branching factor (Fig. 2) exuded
by the host roots may be, it is not a flavonoid component
(Buée et al. 2000) and it weighs less than 500 Da
(Giovannetti et al. 1996).

Subsequent to recognition, physical contact occurs via
chemotropic attraction (Fig. 2) of the hyphae to the host
roots. Upon contact, the fungus produces a swollen struc-
ture, the appressorium, to aid in root entry via the epidermis
(Fig. 2); the formation of this structure is the first sign of
a compatible association. Appressoria commonly form in

the groove between two adjacent files of epidermal cells
(Garriock et al. 1989); their formation appears to involve
both chemical and topographical signaling between the sym-
bionts (Giovannetti et al. 1993; Nagahashi and Douds 1997).

Although calcium spiking has not yet been observed in
response to AM fungi, Walker et al. (2000) found a strong
correlation between symbiotic phenotypes and the presence–
absence of calcium spiking (Fig. 2), which led them to
suggest that calcium spiking may be a common step in the
development of the two symbioses. Fluctuations in the levels
of various host hormones occur during the formation of
appressoria; for example, the concentrations of both auxins
and salicylic acid increase at very early stages of root colo-
nization (Ludwig-Müller 2000). Additionally, ethylene pro-
duction must be regulated so that a strong defence response
by the host is not induced. Gianinazzi-Pearson (1996) has
reviewed this type of response, which appears to be under
tight control because it occurs only in a weak, transient, and
localized manner. The role of this response is not yet fully
understood and it may not necessarily be related to a de-
fence mechanism. For example, Salzer et al. (2000) have
demonstrated that AM-specific chitinases induced in my-
corrhizal barrel medic differ from those expressed in the
same species challenged with either Rhizobium or patho-
genic fungi.

Colonization stages
Once an appressorium (Fig. 2) is formed, a combination

of enzymatic and mechanical processes occurs allowing the
entry of the fungal hyphae into the epidermis. In pea and
many other hosts, AM fungi enter the root tissue by produc-
ing short hyphae (often referred to as penetration pegs) from
appressoria; these penetrate the root between two adjacent
epidermal cells and commonly breach one of the cells
through its anticlinal wall (Garriock et al. 1989). Interest-
ingly, AM fungi can also enter the root via direct penetration
of RH (reviewed by Guinel and Hirsch 2000), in which case
the appressoria are not usually formed by the fungus; this
is likely because the RH wall is much thinner and easier
to penetrate than a nonhair epidermal cell wall. Genre and
Bonfante (2002), studying AM colonization in Lotus
japonicus, reported that the epidermal cell Csk is not altered
significantly by fungal entry; however, hyphae become sur-
rounded by microtubules and actin microfilaments. In addi-
tion, the nucleus, which in noninfected epidermal cells is
usually located along one of the periclinal walls, moves
closer to the AM fungal wall (Genre and Bonfante 2002).

In pea, once the fungal hypha has reached the inner
periclinal wall of an epidermal cell, its diameter decreases
before it exits (Fig. 2) and enters the outermost layer of the
cortex where the hypha returns to its original diameter (e.g.,
Geil et al. 2001). It then proceeds towards the inner cortical
tissue via an intracellular route. Host microtubules reorga-
nize (Fig. 2) as cortical cells are colonized by AM fungi
(Genre and Bonfante 1997; Matsubara et al. 1999). Genre
and Bonfante (2002) observed only a slight alteration of the
peripheral Csk upon colonization of the outer cortical cells
of Lotus japonicus; yet, as in the epidermis, actin bundles
and microtubules reorganize to surround the fungal hyphae.
In addition, Blancaflor et al. (2001) recently demonstrated in
barrel medic that Csk modifications actually occur before
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the fungus enters the cell, which suggests the exchange of a
signal in advance of cell penetration. This “takeover” of
plant cell growth by a microsymbiont is reminiscent of what
occurs in the rhizobial symbiosis during RH curling (see
above). Upon reaching the inner cortex, the fungal hyphae
enter the intercellular spaces; this allows for a rapid spread-
ing of the hyphae along a significant length of the root
(Fig. 2). Eventually, the hyphae reenter the cells of the in-
nermost cortex where they form thick intracellular trunks
that branch dichotomously; the resulting structures, the ar-
buscules (Fig. 2), are considered the main site of nutrient
exchange between the symbionts. Dramatic alterations of the
Csk occur when the arbuscules are developing (Genre and
Bonfante 2002).

Postcolonization stages
Any time the fungus is within a plant cell, it is separated

from the host cytoplasm by a perifungal membrane and an
interfacial matrix (Bonfante and Perotto 1995); these two
components comprise the interface compartment, which is
where bidirectional nutrient transfer occurs. Thus, it is likely
that the site of nutrient exchange is not limited to the ar-
buscule, as all intracellular, and perhaps even intercellular,
hyphae are equipped with an interface compartment (Smith
and Read 1997). Arbuscules are ephemeral structures, the
degeneration of which may provide added nutrients to the
host cells that they temporarily occupy. Spreading of coloni-
zation units along the longitudinal axis of a root occurs
concomitantly with repeated arbuscule formation in the inner
cortex over time. In pea and other hosts, structures called
vesicles form; these balloon-shaped structures contain lipids
and are considered storage reservoirs.

Location of mutant defects on a developmental scale
In this section, we limit our discussion to pea because

organogenesis in, and mutants of, this species have been
studied extensively by us and others (e.g., Tsyganov et al.
2002). Here, we incorporate the loci of known mutations in
an overall model (Fig. 3), obtained by combining the two
diagrams presented earlier (Figs. 1 and 2), in a manner simi-
lar to what has been done recently for the very early stages
of infection (Catoira et al. 2000; Wais et al. 2000; Walker et
al. 2000). With the discovery and characterization of new
mutants, the complexity of the organogenesis of symbiotic
structures becomes more apparent; with each new phenotype
characterized, a novel step is interwoven into the develop-
mental process. In our model, whereas each individual step
of nodule formation is based on the existence of one or sev-
eral mutants, steps depicting AM formation are still quite
speculative (Fig. 3). This is because to date, the study of AM
mutants lags behind that of nodulation mutants, as seen in
Table 2; only those mutants well characterized are included
in our model.

According to our model (Fig. 3), one step (calcium spik-
ing) is shared by both symbioses. This step occurs quite
early developmentally and its position fits with the hypothe-
sis made by several authors that signals released by the
mycorrhizal fungi could activate a transduction pathway
used by NF (Albrecht et al. 1998, 1999; Hirsch and
Kapulnik 1998). That numerous nod– mutants are also myc–

provides more argument for this hypothesis and for LaRue

and Weeden’s (1994) proposal that nodulation could have
evolved at least partially from the AM association. For
a convincing indication of a shared mechanism(s) among
the two symbioses, more mycorrhizal mutants need to
be isolated; also, each common step needs to be studied
in detail and each mycorrhizal phenotype has to be charac-
terized thoroughly and accurately. Studies of physiological
processes should also be undertaken before asserting com-
monalities between steps of the two symbioses. For exam-
ple, Blilou et al. (1999) studied the sym30 mutant with a
different perspective; they demonstrated that the resistance
of this mutant to both symbioses was linked to a root accu-
mulation of free salicylic acid (SA). The amplitude of the re-
sponse to both microsymbionts was greater than that of the
wild-type and increased over time (Blilou et al. 1999). In ad-
dition, the SA increase in sym30 was specific to mutualistic
organisms (i.e., it did not occur in a pathogenic association);
the sym30 gene therefore appears to suppress an SA-
dependent defence response (Blilou et al. 1999).

From examining the reports discussing the properties of
myc– mutants, it is evident that a clear and uniform method
of characterization is needed. As emphasized in Peterson
and Guinel (2000), the temporal and developmental blocks
of each mutant should be precisely described with appropri-
ate designation (see Table 3.1 in Smith and Read 1997). For
example, the myc–1 designation currently comprises mutants
with differing phenotypes; these mutants exhibit a coloniza-
tion block either at the root surface or within the epidermal
cell layer (the fungus penetrates the epidermis but cannot
exit). The sym8 and sym9 mutants (both considered myc–1)
exhibit appressoria formation (app+) but penetration of the
epidermis by the AM fungus never occurs (pen–), indicating a
root surface block (Balaji et al. 1994; Albrecht et al. 1998).
Although the sym30 mutant (also myc–1) is considered a pen–

mutant (Gianinazzi-Pearson 1996; Marsh and Schultze
2001), colonization of this mutant occasionally includes
short infective hyphae originating from appressoria; how-
ever, these abort very quickly (Gollotte et al. 1993). Simi-
larly, the sym19 mutant is regarded as a pen– mutant (Marsh
and Schultze 2001), but Duc et al. (1989) indicated that pen-
etration of the epidermis could occur in this mutant; hyphae
could sometimes occupy a few cells before colonization was
aborted. Thus, we believe that sym19 could be placed further
down in our model (Fig. 3), closer to epidermis penetration;
sym30 would then be involved at an intermediate temporal
location.

Epidermis–cortex interface

Epidermis
The loci controlling both nodulation and AM formation

(in bold in Fig. 3) mostly regulate steps involving the epider-
mal program. In only one case (sym36) does a mutant link
the cortical program of nodulation with AM development.
As mentioned earlier, sym36 has abnormal IT and few divid-
ing inner cortical cells (Sagan et al. 1994); upon fungal colo-
nization, it forms stumpy arbuscules (Gianinazzi-Pearson et
al. 1991). The fungal hypha enters the cortical cell and dif-
ferentiates into an arbuscular trunk, but no branches form. It
is possible that with the characterization of more mutants,
other loci similar to that of sym36 will be found. It is also
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possible that nodulation mutants affected in their cortical
program will not be blocked in the development of mycor-
rhiza because the AM fungi invade roots without triggering
any events in the cortex. For example, the sym16 mutant
is able to form perfectly normal arbuscules (R. Landewert,
R.L. Peterson, and F.C. Guinel, data not shown), although it
is blocked in its nodulation at the start of NP formation
(Guinel and Sloetjes 2000). Most of the loci controlling the
steps of the nodulation cortical program appear not to affect
mycorrhiza formation (Fig. 3). The epidermis seems to act
as a cortical gate-keeper both for rhizobia and for AM fungi.

Distinguishing features of epidermal and cortical cells
That the epidermal cells can be distinguished from the

cortical cells by both rhizobial and fungal microsymbionts is
not surprising. They are different in their lineages (Fahn
1986) and in their cell wall structure and biochemistry. For
example, in Allium porrum (leek), different carbohydrate
epitopes are found in the epidermal versus the cortical cell
wall matrices (Balestrini et al. 1996). In an artificial system
using isolated carrot cells, appressoria formed on epidermal
walls but not on cortical walls (Nagahashi and Douds 1997).
Epidermal and cortical cells can also be distinguished by
gene expression; for example, upon rhizobial inoculation, a
peroxidase gene (rip1) is induced specifically in the epider-
mal cells of barrel medic (Cook et al. 1995) whereas the
nodulin MtENOD20 is expressed only in the nodule progeni-
tor cells of the inner cortex (Vernoud et al. 1999). The exis-
tence of cell-specific protein markers raises the question of
target cells (Osborne 1984) that respond in a specific way to
hormonal signals. An example applying to the symbioses
would be that of the effect that cytokinins have on the inner
cortex; alfalfa roots treated with this hormone exhibit few
anticlinal cell divisions only in their inner cortex, reminis-
cent of the divisions observed after NF treatment (Bauer et
al. 1996). Another example is that of ethylene; ethylene does
not appear to interfere with bacterial entry into the epidermis
but is inhibitory to the formation of an NP (van Spronsen et
al. 1995). Finally, these cells differ metabolically; Heidstra
et al. (1997) very elegantly showed, by in situ hybridization,
that only the cells of the inner cortex facing the phloem
poles were expressing 1-amino-cyclopropane-1-carboxylic
acid (ACC) oxidase, the enzyme that catalyzes the last step
of the ethylene biosynthetic pathway. Similarly, the epider-
mal cells can undertake metabolic steps that are specific to
them (e.g., steps involved in the synthesis and secretion of
mucilage).

Interface as a tight checkpoint
A hot spot exists where numerous mutations (sym36,

sym2A, and sym38) affect the same step, that at which the IT
progresses from the RH to the basal part of the epidermal
cell. These loci also seem to control two steps in the cortical
program (Fig. 3). The epidermal layer indeed represents a
strict checkpoint, as indicated by Bonfante et al. (2000) for
Lotus japonicus, that exerts a great deal of regulatory control
over the development of the two symbioses because another
sensitive step is the breaching of the inner periclinal wall of
the epidermis (see below). Even in wild-type pea, numerous
IT abort in the base of the epidermal cell (Guinel and LaRue
1992). Additional evidence for tight regulation of both

nodulation and AM fungal colonization at this point is given
by the brz mutant, in which the parallel between the two
plant–microbe interactions is striking (Resendes et al. 2001).
In each symbiosis, there is a similar reduction in the number
of infections, a block at the epidermis–cortex interface, and
a few successful infections and the two phenotypes are con-
trolled by the shoot. Control at this interface has also been
reported in species other than pea; Wegel et al. (1998), who
studied AM formation in Lotus japonicus nodulation mu-
tants, termed mutants with a block at this level Coi– for cor-
tex invasion. Bonfante et al. (2000) further studied these
mutants and reported the LjSym4-1 and LjSym4-2 pheno-
types. The LjSym4-1 phenotype is very similar to that of the
brz pea mutant (Resendes et al. 2001), except in LjSym4-1, a
root surface block is not evident. The LjSym4-2 mutant ex-
hibits a much stronger block to epidermal exit in that AM do
not form because hyphae never exit the epidermis (Bonfante
et al. 2000). Recently, Genre and Bonfante (2002) proposed
that LjSym4 is critical in establishing the proper rearrange-
ment of the Csk in the epidermis; its correct expression
would allow the AM fungus to cross the epidermal layer
without any obstruction. Thus, we can conclude with cer-
tainty that the epidermis, especially at its interface with the
cortex, is a strong checkpoint in AM colonization (Geurts et
al. 1997; Bonfante et al. 2000; Senoo et al. 2000; Resendes
et al. 2001).

Effects of ethylene on the two symbioses

Some reviews have dealt primarily with the regulation of
the formation of the two organs (for nodules: Caetano-
Anolles 1997; Schultze and Kondorosi 1998; Stougaard
2000; for AM: Barker et al. 1998; Peterson and Guinel
2000); others have focused specifically on the roles of
phytohormones in the organogenesis and the regulation of
these symbioses, with an emphasis on auxin and cytokinin
(e.g., for nodulation: Hirsch and Fang 1994; Hirsch et al.
1997; for AM: Barker and Tagu 2000; Ludwig-Müller
2000). As for ethylene, it is considered an inhibitor (Hirsch
and Fang 1994) at least in some legumes such as Phaseolus
vulgaris (bean) (Grobbelaar et al. 1971) and pea (Drennan
and Norton 1972).

For several decades now, ethylene has been reported to
affect the morphology of a plant and to act at any stage of its
development. It is surprising to us that reviews on ethylene
(e.g., Smalle and van der Straeten 1997; Johnson and Ecker
1998) referred to its effects on symbioses only in an anec-
dotal manner. We are aware of only one review that men-
tions the effects of ethylene on both symbioses; this review
(Lynch and Brown 1997) on plant responses to nutritional
stress indicates briefly and very generally how the two inter-
actions, known to assist the nutritional status of plants under
stress, are affected by ethylene. Ethylene is seen as an
important hormone, involved in several steps of nodule
organogenesis, negatively regulating the initial steps of the
developmental process as well as nodule senescence and
abscission (Lynch and Brown 1997). Its role in the develop-
ment of mycorrhizal associations is more difficult to pin-
point; Lynch and Brown (1997) suggested that it could help
a plant to distinguish a beneficial symbiont from a pathogen.
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Norton 1972) and white clover (Goodlass and Smith 1979).
In each of these studies, the experimental system presented a
flaw that made the results less convincing. For example,
Grobbelaar et al. (1971) used excised roots that would have
produced endogenous wound ethylene. Drennan and Norton
(1972) added ethephon (ethrel®), an ethylene-releasing
compound, to the nutrient solution and were then unable to
determine the exact amount of ethylene given to the roots. In
addition, ethrel is known to be hydrolyzed into ethylene,
water, and phosphate (Abeles et al. 1992); thus, the observed
effects were not necessarily due to ethylene. Finally,
although Goodlass and Smith (1979) were aware of these
problems and wanted to treat intact plants with only the
roots exposed to ethylene, they applied the gas to the roots
4 weeks after planting and inoculating, a time at which most
of the nodules would have already formed on pea, one of the
species that they studied. In the early 1990s, Lee and LaRue
(1992c) revisited this issue of ethylene and nodulation.
These authors designed an experiment where the roots of
intact plants and their substrates were treated continuously
with very low concentrations of ethylene from the time
of inoculation to that of harvest. Concentrations as low as
0.07 µL/L reduced by half the number of nodules formed
(Lee and LaRue 1992c). The number of infections was not
altered by exogenous ethylene; the step most affected by the
treatment was the entry of the rhizobia into the outermost
cortical cell layer. Lee and LaRue (1992c) also showed that
not all nodulating plants respond to ethylene in the same
manner; pea and Melilotus alba annua (sweet clover) were
sensitive to the hormone whereas Glycine max (soybean)
was not.

Indirect evidence of the action of endogenous ethylene
None of the studies described above, where ethylene or

an ethylene-releasing compound was applied to plants, gave
clear evidence that endogenous ethylene acted in the regula-
tion of nodulation. The knowledge of the biosynthetic path-
way of ethylene (Fig. 6), the use of ethylene precursors and
inhibitors, and the use of plant mutants have allowed re-
searchers to investigate this question.

Use of chemical compounds involved in and (or) interacting
with ethylene biosynthesis

ACC, the direct precursor of ethylene (Fig. 6), applied
to roots had the same effect as ethylene on nodulation;
when added at various times after inoculation to the growth
medium of barrel medic, ACC effectively blocked
nodulation (Penmetsa and Cook 1997). ACC also reduced
nodule number in alfalfa, Lotus japonicus, and Macroptilium
atropurpureum (siratro) but not in soybean (Nukui et al.
2000). Conversely, numerous studies with ethylene inhibi-
tors have shown that these compounds repress the inhibitory
effect of ethylene on nodulation. For example, Nukui et al.
(2000) observed an increase in nodule number when alfalfa,
Lotus japonicus, or siratro was treated with either
aminoethoxyvinylglycine (AVG), an inhibitor of ACC
synthase (Fig. 6), or silver thiosulfate, a compound that re-
leases silver, an antagonist of ethylene action (Fig. 6). Using
the properties of ACC and AVG and altering their levels,
Oldroyd et al. (2001) were able to modulate the infection
frequency and the number of nodules formed on barrel
medic; whereas ACC lowers frequency and nodule number,
AVG increases them. These results confirmed the findings of
Peters and Crist-Estes (1989), Fearn and LaRue (1991), Lee
and LaRue (1992a), and Guinel and LaRue (1992) who
showed that treating wild-type seedlings with ethylene
inhibitors or antagonists consistently, although not always
significantly, increased nodule number. Neither of these
compounds, however, affected nodulation on soybean (Lee
and LaRue 1992c).

The involvement of endogenous ethylene in nodulation
has been further demonstrated while studying the infection
of Vicia sativa (vetch) subsp. nigra by Rhizobium. Growing
the inoculated roots in the light results in the development of
an aberrant root morphology and abnormal nodulation char-
acterized respectively by thick short roots (tsr) and unusual
location of the nodules (Zaat et al. 1989). It was suggested
by van Spronsen et al. (1995) that this tsr phenotype is
caused by an overproduction of ethylene. When dark-grown,
inoculated vetch roots were treated with ethrel, the same
aberrant root and nodulation phenotypes were obtained. In
contrast, when the light-grown roots were treated with AVG,
nodulation was restored on the primary root (Zaat et al.
1989).

Further evidence, although indirect, demonstrating the in-
volvement of endogenous ethylene in nodulation was uncov-
ered when studying a toxin produced by Bradyrhizobium
elkanii. This bacterium synthesizes rhizobitoxine, a chemical
that induces leaf chlorosis (e.g., Duodu et al. 1999) and is a
potent inhibitor of ACC synthase (Yasuta et al. 1999)
(Fig. 6). The toxin plays a promotive role in the nodulation
of Vigna radiata (mung bean) (Duodu et al. 1999) and
siratro (Yuhashi et al. 2000). In mung bean, the positive
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Fig. 6. Simplified biosynthetic pathway of ethylene, at least as it
is known to occur in the root cortex of higher plants. Whereas
AVG (aminoethoxyvinylglycine), a synthetic compound, and
rhizobitoxine, a natural bacterial toxin, are inhibitors of ACC
synthase, cytokinin, a plant hormone, stimulates the expression of
this enzyme. Cobalt or salicylic acid inhibit ACC oxidase, the en-
zyme responsible for the last step of the pathway, whereas silver
is an antagonist of ethylene action. Modified from Abeles et al.
(1992).

     

     
   



effect of rhizobitoxine was established by using bacterial
mutants unable to synthesize the toxin (Duodu et al. 1999).
When the host plants were inoculated with the mutant bacte-
ria, they exhibited nodules arrested at late stages of develop-
ment, i.e., any stages after NP formation. The nodulation
phenotype was partially restored by supplementing the
growth medium with AVG or cobalt, an inhibitor of ACC
oxidase (Fig. 6) (Duodu et al. 1999). In siratro, rhizobitoxine
decreased ethylene evolution whereas the inhibition of its
biosynthesis was correlated with an increase in ethylene pro-
duction and a decrease in nodulation (Yuhashi et al. 2000).
It is interesting to note that Bradyrhizobium elkanii infects
soybean, mung bean, and siratro, legumes all known to form
determinate nodules, i.e., nodules with NP initiating in the
outer cortex. To date, the effects of the toxin on legumes
forming indeterminate nodules have not been studied.

Use of mutants and transgenic plants
The inhibitory effects of ethylene on nodulation have been

further demonstrated by the use of legume mutants or
transgenes characterized as either ethylene insensitive, sensi-
tive, or overproducers. The sickle mutant of barrel medic has
been characterized as a hypernodulator, i.e., it forms many
more nodules than its parent, possibly because it is unable to
regulate the number of infections formed by the rhizobia
(Penmetsa and Cook 1997). In addition, sickle does not re-
spond to either ethylene or ACC treatment and appears to be
defective in ethylene perception (Penmetsa and Cook 1997).
In fact, genetic analysis of sickle demonstrated that its
nodulation phenotype and its ethylene insensitivity are deter-
mined by a single, recessive allele (Penmetsa and Cook
1997), underlining the involvement of the hormone in the
regulation of rhizobial infection.

This correlation between lack of ethylene sensitivity and
high nodule number was further confirmed by Gresshoff et
al. (2001) who inserted a mutated gene of the Arabidopsis
dominant ethylene receptor gene etr1 (the product of this
gene is located upstream of ctr1 in the ethylene transduction
pathway; Fig. 6) into the genome of Lotus japonicus. In
Arabidopsis, etr1-1 mutants are ethylene insensitive because
the transduction of the ethylene signal is lacking. Transgenic
Lotus japonicus plants are also ethylene insensitive and they
show a novel nodulation phenotype; nodule numbers are
increased, much less NP form in front of the root xylem
poles (70% in the transgene versus 96% in the wild-type),
and there are twofold more bacteroids per symbiosome
(P.M. Gresshoff and D. Lohar, personal communication).
Nodule number is proportional to ethylene insensitivity and
to transgene expression, i.e., the higher the etr1-1 expression
(Northern blots), the higher the seedling growth insensitivity
and the larger the nodule number (Gresshoff et al. 2001).

Numerous pleiotropic pea mutants, characterized as low
nodulators, are sensitive to ethylene, i.e., their nodulation is
restored when their roots are treated with AVG, cobalt, or
silver (Fig. 6). The sym5 (Guinel and LaRue 1991) and brz
(Guinel and LaRue 1992) mutants form an increased number
of nodules on their lateral roots when AVG or silver is
applied at the plant crown. Similar results were obtained
with sym21 treated with cobalt or silver; however, although
significantly higher, nodule numbers were still low when
compared with those of the wild-type (Markwei and LaRue

1997). Nodulation was entirely restored by ethylene inhibi-
tors and antagonists on sym16, a mutant that also exhibits
pale-green leaves (Guinel and Sloetjes 2000) and higher
concentrations of cytokinins in its roots (B.J. Ferguson and
F.C. Guinel, data not shown) and shoots. Interestingly,
cytokinin treatments of wild-type pea roots significantly in-
hibit nodulation and promote root ethylene evolution
(Lorteau et al. 2001).

One pea mutant, sym17, is known to be an ethylene
overproducer (Lee and LaRue 1992a). This mutant is char-
acterized by short stature and abnormal root growth; further-
more, it has pronounced apical dominance and wrinkled
pods. Although it is classified as a low nodulator, its number
of nodules is higher than that of the pea mutants previously
mentioned. Approximately 60 small nodules formed per root
system (compared with 300 in the wild-type); the specific
nitrogenase activity of the sym17 nodule is similar to that
of the wild-type (Lee and LaRue 1992a). Surprisingly,
although sym17 is an overproducer of ethylene, its
nodulation phenotype was not normalized by either AVG or
silver thiosulfate (Lee and LaRue 1992a).

Effects of ethylene on AM formation
There is clear evidence for an inhibitory role of exoge-

nous ethylene in this process. However, similarly to the
effects of ethylene on nodulation, it is difficult to assign a
role for the endogenous levels of the hormone in AM forma-
tion and to conclude if AM have any effects on host ethylene
production.

Regulation of AM fungal colonization by exogenous
ethylene

Ethylene is primarily regarded as inhibitory to the forma-
tion of AM; this effect has been demonstrated in several
host–AM fungal combinations. Azcon-Aguilar et al. (1981)
first reported decreased colonization in two hosts, alfalfa and
Triticum vulgare (wheat), by the AM fungus Glomus
mosseae as a result of treating the substrate with ethrel; they
found that the intensity of colonization inhibition always
increased with increasing concentration of ethrel. Similarly,
Morandi (1989) reported that a weekly ethrel soil drench
resulted in significant reduction of soybean root colonization
by Glomus fasciculatum; this is interesting, since as a part-
ner in the rhizobial symbiosis, soybean appears to be insen-
sitive to ethylene. As mentioned earlier, there are several
problems inherent in the use of ethrel as a source of ethylene;
one of the most important with respect to AM studies is the
release of phosphate, which itself can reduce colonization
(Smith and Read 1997) upon ethrel hydrolysis (Abeles et al.
1992). Ishii et al. (1996) applied ethylene gas directly to the
substrate; these authors investigated the effects of ethylene on
Gigaspora ramisporophora colonization of Poncirus trifoliata
(trifoliate orange) roots and found that 1.0 µL ethylene/L
depressed AM formation. Continuously applying 5.5 µL ethylene/L
to pea roots colonized by Glomus aggregatum similarly de-
creased colonization (Geil et al. 2001); the same effect was ob-
served in roots of Allium porrum (leek) colonized by the same
AM fungus and exposed to 0.6 µL ethylene/L (Geil and Guinel
2002).

Indirect evidence for ethylene as an inhibitor of AM for-
mation also exists. For example, El Ghachtouli et al. (1995)
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suggested that increased colonization of pea by
Glomus intraradices after treatment with polyamines could
have been, in part, the result of these compounds inhibiting
host ethylene production. Also, Nadian et al. (1998) specu-
lated that reduced colonization observed in Trifolium
subterraneum (clover) by four different species of Glomus
in highly compacted soil might have been the result of in-
creased ethylene production by the physically impeded
roots. Interestingly, at a very low concentration (0.05 µL/L),
ethylene appears to have a stimulatory effect on AM forma-
tion (Ishii et al. 1996). Thus, the concentration of ethylene in
the substrate seems to dictate whether this hormone is inhib-
itory or not.

Effects of AM fungal colonization on host ethylene
production

Several studies have indicated that host ethylene produc-
tion is altered as a result of the formation of an AM symbio-
sis. McArthur and Knowles (1992), in their study of
Solanum tuberosum (potato) AM formed by G. fasciculatum
under different phosphorus availability, were first to report
AM-induced alterations in host ethylene production. They
demonstrated that colonized roots had lower ACC oxidase
activity than noncolonized roots, limiting the capacity of
AM roots to produce ethylene. Similarly, Besmer and Koide
(1999) reported a decrease in flower ethylene production
in Antirrhinum majus (snapdragon) – G. intraradices AM
plants. In their study of AM formed between Carica papaya
(papaya) and Gigaspora margarita, Cruz et al. (2000) also
observed a decrease in ethylene production (despite an in-
crease in ACC) but only in water-stressed AM roots. Thus,
there appears to be a trend indicating that host ethylene pro-
duction is decreased as a result of AM formation, presum-
ably via inhibition of ACC oxidase by a product resulting
from AM formation.

In contrast with these findings, Vierheilig et al. (1994)
reported that colonization of Lycopersicon esculentum
(tomato) by Glomus mosseae did not have any effect on root
ethylene production. The findings of Dugassa et al. (1996)
further complicate the issue; these authors reported nearly
double the ethylene production in roots of Linum
usitatissimum (flax) colonized by G. intraradices. It should
also be noted that in well-irrigated roots, AM fungal coloniza-
tion increased ethylene production despite no difference in
ACC levels between AM and non-AM roots (Cruz et al.
2000). Given the inconsistencies among different AM sys-
tems, it is difficult to outline the general effects that AM
formation has on host ethylene production; this is perhaps
simply due to the differences existing among the host species.

Potential specific roles for ethylene in the
symbioses

Once again, we approach the subject in a chronological
manner, from the preinfection stages to the mature structure,
but mention only those steps in which ethylene appears to be
involved (even in a remote fashion). As in the previous sec-
tions, we do not focus on the functioning of these symbioses
(e.g., we do not report on the relationships existing between
nitrate, phosphate, ethylene, and symbioses). Because there
is a paucity of information on the involvement of ethylene in

the establishment of AM, this section deals mainly with
nodulation; however, in the physiological processes shared
by the two symbioses, ethylene probably has a similar ac-
tion. Here, we felt compelled to incorporate the literature on
determinate nodules because it appears that PIT formation
and nodule meristem persistence are affected by ethylene in
this type of nodule.

Preinfection stages

Calcium spiking
Ethylene modulates the NF signal transduction pathway,

especially by altering cytosolic calcium spiking (Oldroyd et
al. 2001). These authors suggest that the hormone not only
determines the sensitivity of the plant to NF but it also
defines the nature (strength and frequency) of the calcium
spiking response. In addition, ethylene inhibits the mainte-
nance of calcium spiking. Oldroyd et al. (2001) proposed
that either the ethylene effect on calcium spiking is linked to
the multiple ethylene-regulated effects observed during nod-
ule formation or calcium spiking is one among many steps
controlled directly and independently by ethylene. Walker et
al. (2000) summarized the correlation existing between nod–

and myc– phenotypes and calcium spiking; a parallel exists
between a defect in calcium spiking and these phenotypes,
suggesting to us that ethylene would affect calcium
responses in both symbioses similarly.

Transient defence response
Examples of signals generated in plants by the intrusion

of pathogens are active oxygen species, ethylene, and SA
(e.g., Kombrink and Somssich 1995); although rhizobia and
AM fungi are able to ultimately suppress these signals, they
are present transiently in infected legume roots. Both active
oxygen species (Abeles et al. 1992) and SA (Raskin 1995)
are involved in the regulation of ethylene.

In alfalfa at least, rhizobial inoculation results in an oxida-
tive burst producing superoxide and hydrogen peroxide
(Santos et al. 2001), which could react nonenzymatically
with ACC to promote the production of ethylene (Yang et al.
1990). The localization of superoxide was studied histo-
chemically and the oxidative species was observed as early
as in the step of pocket colonization but also in the infection
zone of the mature nodule. Santos et al. (2001) suggested
that the burst is a prolonged one that could be involved in
the regulation of the entire process of infection. Rhizobial
superoxide dismutase appears to play a role in the detoxifi-
cation of superoxide; in alfalfa inoculated with a rhizobial
mutant deficient in this enzyme, IT abort quite early in the
RH (Santos et al. 2000).

Ethylene production is inhibited by SA through the inhibi-
tion of ACC oxidase (Fig. 6) (Raskin 1995); however, SA
negatively regulates nodulation as does ethylene. In alfalfa,
exogenous application of SA reduces nodule number and
delays nodule development, and endogenous SA levels are
suppressed upon recognition of the two symbiotic partners
(Martínez-Abarca et al. 1998). If either one of the partners
has a defect, SA accumulates in the roots; in the alfalfa sym-
biosis, SA accumulates as early as 4 h after inoculation with
either an incompatible or an NF-deficient Rhizobium
(Martínez-Abarca et al. 1998). In the pea symbiosis, a simi-
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lar SA effect is observed; upon recognition between the two
symbionts, SA production is reduced. However, when wild-
type pea is inoculated with a Nod C– rhizobial mutant, SA
levels increase by threefold (Blilou et al. 1999). The sym30
pea mutant also increases SA levels upon inoculation, but it
does so even with a proper bacterial partner (Blilou et al.
1999). These authors also studied the evolution of SA in an
AM association. In both colonized wild-type and sym30, SA
levels increased over time; however, the levels were greater
in the mutant.

Ethylene was produced rapidly after rhizobial inoculation
of alfalfa (Ligero et al. 1986), vetch (van Workum et al.
1995), and soybean (Suganuma et al. 1995; Ligero et al.
1999) but not in pea cv. Sparkle (Lee and LaRue 1992b;
F.C. Guinel, data not shown). In those plants that produced
ethylene in response to inoculation, the bacteria were not
required because vetch treated with rhizobial NF alone pro-
duces ethylene (van Workum et al. 1995). However, the pro-
duction appears to be specific, since no increase in ethylene
production was observed in nonnodulating soybean mutants
or in soybean infected with heterologous rhizobia
(Suganuma et al. 1995). As aforementioned, AM coloniza-
tion alters host ethylene production; several studies indicate
a decrease in ethylene evolution probably because of a
decrease in ACC oxidase activity (e.g., McArthur and
Knowles 1992).

Cytoskeleton
Timmers et al. (1999) very elegantly demonstrated that

the Csk of all root tissues responds to the presence of bacte-
ria; the cells of the pericycle, followed by those of the inner
cortex, undergo alterations of the microtubular Csk. Later,
RH exhibit a reorganization of their microtubules (Timmers
et al. 1999; Catoira et al. 2001) and of their microfilaments
(Lhuissier et al. 2001), allowing them to form the well-
known shepherd’s crooks.

Several years ago, ethylene was proposed to stabilize
microtubules and to promote tubulin polymerization (Steen
and Chadwick 1981; Roberts et al. 1985). Ethylene could
thus have an indirect effect on cellulose microfibril deposi-
tion and act in localized resistance (Abeles et al. 1992). This
effect is thought to be important in noncompatible interac-
tions (e.g., Kobayashi et al. 1992), and Timmers (2000)
proposed that a similar mechanism is used in compatible
interactions; the Csk could affect the deposition of the cellu-
lose microfibrils in such a way that they would not prevent
the bacteria from entering the RH. Recent works by
Geitmann et al. (1997) and Sugimoto et al. (2000) are oblig-
ing us to review the indirect effect(s) of ethylene on cell
wall deposition. Geitmann et al. (1997) studied the effect of
ethylene evolved from wounded pea roots on microtubule
orientation; because AVG (Fig. 6) did not affect the wound-
induced rearrangement of the microtubules, these authors
concluded that ethylene did not play a role in Csk realign-
ment. Furthermore, in an excellent paper, Sugimoto et al.
(2000) questioned the correlation existing between micro-
tubules and cellulose microfibrils; this correlation does not
appear to be as tight as what was believed earlier, at least in
Arabidopsis roots. The lack of synchrony in the ethylene,
microtubules, and cellulose microfibrils path perhaps ex-
plains why ethylene does not appear to play a role in RH

deformation induced by NF (Heidstra et al. 1997). The
entire problem will have to be revisited keeping in mind that
the epidermis could react to ethylene in a manner different
from the cortex. In Geitmann et al.’s (1997) study, the epi-
dermis was removed, and therefore, what was studied was
the effect of ethylene on the reorientation of microtubules in
cortical cells. Better-designed experiments differentiating
the epidermis from the cortex are required.

Preinfection thread
Given its potential effect on the Csk, it is possible that

ethylene interacts with PIT development because its estab-
lishment relies on Csk rearrangement upon root treatment
with NF (Timmers et al. 1999). The peripheral microtubules
disassemble and a bundle of endoplasmic microtubules reas-
semble in the centre of the cell (Timmers et al. 1999). van
Spronsen et al. (2001) correlated the presence of PIT with
ethylene sensitivity in plants that form determinate nodules;
they proposed that Lotus japonicus, which forms PIT, have a
higher sensitivity to the hormone than bean, which does not
form them. Future work should include the investigation of
ethylene effects on PIT formation in plants with indetermi-
nate nodules.

Infection stages

Colonization
Ethylene does not appear to inhibit root colonization per

se by the microsymbionts. Indirect evidence is given by brz,
a low-nodulating pea mutant that has a third less rhizobial
infections (Guinel and LaRue 1992) and appressoria
(Resendes et al. 2001) than its parent ‘Sparkle’. Neither
AVG nor silver (Fig. 6) treatment increases the number of
rhizobial infections (Guinel and LaRue 1992); the effects
of ethylene inhibitors on the number of appressoria formed
were not studied. It should be noted that exogenous ethylene
may have a direct effect on the fungus causing it to form
abnormal appressoria (Geil et al. 2001) reminiscent of mor-
phological alterations observed in several mycorrhizal mu-
tants (e.g., Senoo et al. 2000)

Infection thread
The bacteria within the IT matrix follow the path of the

PIT as the IT grows into the cortex. Ethylene could have a
direct effect on the IT progress because it is known to stimu-
late the enzyme peroxidase (Abeles et al. 1992). Recently,
Wisniewski et al. (2000) proposed that peroxidase acts on
hydrogen peroxide liberated from the action of diamine
oxidase on polyamines and cross-links the glycoproteins of
the IT, effectively congealing it and blocking its growth. The
authors suggested that such a hardening could play an im-
portant role in IT abortion; factors (such as ethylene) known
to increase IT abortion could increase the production of
peroxidase (Wisniewski et al. 2000). IT abortion is a known
natural occurrence that has been demonstrated in pea
(Guinel and LaRue 1992) and in barrel medic (Penmetsa and
Cook 1997). In mutants of these species, a correlation has
been drawn between ethylene sensing and number of aborted
IT, suggesting that ethylene is inhibitory to IT growth. In
sickle, an ethylene-insensitive mutant of barrel medic, the
number of aborted IT is practically nil (Penmetsa and Cook
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1997) whereas in brz, a pea mutant probably oversensitive to
ethylene, that number is very high and is reduced upon treat-
ment with ethylene inhibitors (Guinel and LaRue 1992).

Lee and LaRue (1992c) have been able to phenocopy brz
by treating the wild-type ‘Sparkle’ with exogenous ethylene;
most of the IT are arrested in the RH or the bases of these
cells. A similar arrest was observed when roots of inoculated
‘Sparkle’ were grown in dim light (Lee and LaRue 1992b);
this inhibitory effect appears to have been mediated by
ethylene because silver was able to restore the number of
nodules to that found on dark-grown roots. Roots are in fact
very sensitive to light; even dim light can stimulate ethylene
production in pea (Table 2 in Lee and LaRue 1992b); this
light-induced ethylene effect was confirmed in vetch
whereby inoculated light-grown roots (tsr plants) had nu-
merous infections aborted, with threads growing very rarely
beyond the outermost cortical cell layer (van Spronsen et al.
1995).

Nodule primordium position and formation
That ethylene is a determinant of NP positioning is a

recent finding. Heidstra et al. (1997) very elegantly showed
in both pea and vetch how ACC oxidase is expressed only in
the inner cortical cells facing the phloem poles of the vascu-
lar tissue; these authors were the first to correlate ethylene
production and inhibition of NP initiation. Thus, the old
observation that nodules generally emerged in front of xy-
lem poles can be explained physiologically.

Two pea mutants appear to be affected in the development
of NP, and both mutant phenotypes can be rescued by ethyl-
ene inhibitors and antagonists. The sym5 mutant exhibits IT
growing in the root cortex in a manner similar to that of the
parent, but these IT are not associated with cellular divisions
(Guinel and LaRue 1991). Silver treatment stimulates inner
cortical cells to divide and IT to progress towards NP; how-
ever, the total number of nodules formed is still quite low
compared with that of the wild-type (Fearn and LaRue 1991;
Guinel and LaRue 1991). On the contrary, in sym16, the
wild-type nodulation phenotype is totally restored by AVG
or silver treatment (Guinel and Sloetjes 2000). The sym16
phenotype is unique in that the IT are twisted and, in gen-
eral, grow parallel to the root surface; in addition, divisions
occur in the cortex, but these are limited to anticlinal divi-
sions, so the primordium appears flat (Guinel and Sloetjes
2000).

Postinfection stages
Ethylene appears to play a role in controlling the persis-

tence of the nodule meristem. In Sesbania, a semiaquatic
tropical legume in which rhizobia enter the root by crack
entry (e.g., D’Haeze 2001), determinate and indeterminate
nodules can develop on the roots (Fernández-López et al.
1998). Fernández-López et al. (1998) proposed that ethylene
is the physiological switch that determines the nodule type;
in effect, silver triggers the formation of indeterminate nod-
ules whereas ethrel promotes the development of determi-
nate nodules. Furthermore, the conditions in which the
legume grows allow differential ethylene levels to form
around the NP. In an aerated support (e.g., vermiculite)
where ethylene accumulation will not prevail, indeterminate
nodules form whereas in a waterlogged environment known

to promote ethylene production, determinate nodules form
(Fernández-López et al. 1998).

To date, it is difficult to draw any conclusions on the
possible role(s) of ethylene during these late stages. The
increase in nodule number observed in the sym21 pea mutant
treated with ethylene inhibitors (Markwei and LaRue 1997)
could simply be due to the effect of these compounds on IT
growth. Ethylene inhibitors did not appear to have any regu-
latory effects on sym17, the only known ethylene overpro-
ducing pea mutant (Lee and LaRue 1992a).

Hindrances to ethylene studies
To generalize any results related to ethylene is very diffi-

cult. For example, it appears that not all plant cells have the
complete biosynthetic apparatus necessary to make ethylene.
In mung bean stems, the epidermal cells lack ACC oxidase
activity (Todaka and Imaseki 1985), and in the pea variety
Argenteum, whereas the leaf mesophyll cells produce ethyl-
ene through ACC conversion (i.e., via ACC oxidase), the
epidermal cells do not (Osborne 1991). Osborne (1991) sug-
gested that, at least in this genetic line, the epidermis uses an
alternative pathway to make the hormone. A possible path-
way could be that demonstrated by Mattoo et al. (1986),
which involves singlet oxygen obtained from lipid pero-
xidation and triggered under stress conditions. In addition,
hormone sensitivity is known to change depending on the
tissue and cells considered (Osborne 1990; Cao et al. 1999)
and on the species studied (John 1997). For example,
soybean nodulation does not appear to respond to ethylene
(Hunter 1993; Schmidt et al. 1999) whereas that of pea does
(Lee and LaRue 1992b). It has also been proposed by
Smalle and van der Straeten (1997) that specific parts of the
cell or of the cell wall could respond differently to ethylene.
This could explain why in the nonnodulating sym16 pea
mutant, which exhibits altered ethylene sensitivity, only anti-
clinal divisions are initiated in the NP (Guinel and Sloetjes
2000). Hormones are also known not to act on their own but
in concert with other hormones (Abeles et al. 1992). Finally,
we want to underline the lack of knowledge on the cellular
location of the enzymes (well-defined molecularly) involved
in ethylene biosynthesis. Thus, we are not yet certain of the
location of ACC oxidase (e.g., John 1997); it appears that
the enzyme could be found in the cytoplasm and in the
apoplast, although we do not yet know how it crosses the
plasma membrane.

The complexity of studying ethylene further increases
when one works with symbioses. It is known that the
microsymbionts also evolve the hormone, but they do so
through pathways different from that of higher plants (Fukuda
et al. 1993); however, some bacteria are known to recognize
components of the plant pathway and act upon them. For
example, several types of Pseudomonas possess the enzyme
ACC deaminase that catalyzes the hydrolysis of ACC into
ammonia and α-ketobutyrate (e.g., Glick et al. 1998).

A model for the involvement of ethylene in
the establishment of nodulation

Strong evidence was given in this review in favour of
ethylene being an inhibitor of nodulation; however, a defi-
nite and precise role for this plant hormone has yet to be
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determined. Even less is known about the role of ethylene in
AM formation, and this is why this final discussion is
focused on nodulation. Here, we want to present a hypothe-
sis that we believe takes into consideration most of the data
obtained on nodule organogenesis; it will need to be tested
by us and others. It can be argued that ethylene is not
involved before physical contact is made between the
rhizobia and their host because no mutants with defects in
the preinfection stages have yet been reported to be ethylene
sensitive. However, because ethylene has been shown to
affect NF-induced responses such as calcium spiking in the
absence of rhizobia, one cannot refute that it could have an
indirect role. We propose that (i) the main site of ethylene
action is at the interface between the epidermis and the
outermost cortical cell layer and (ii) the ethylene effect is
dependent on the host species.

The main site of ethylene action is at the epidermis–
cortex interface

Our model is based on two assumptions; the first is that
ACC oxidase is not present in epidermal cells, and the
second is that these cells are unable to perceive ethylene.
Taking these two assumptions into consideration, the first
encounter that the bacteria would have with a regulatory
level of ethylene would be at the interface between the epi-
dermis and cortex. The cortical tissue would respond to the
bacterial presence by converting its ACC into ethylene, per-
haps as a component of a transient defence response. The
ethylene evolved would move easily into the root
intercellular space.

At the root surface per se, there is a control that we
believe is independent of ethylene. This control is demon-
strated by the existence of nod– mutants such as brz (Guinel
and LaRue 1992; Resendes et al. 2001), the phenotype
of which is not restored by ethylene inhibitors. Also, Lee
and LaRue (1992c) demonstrated that exogenous ethylene
did not interfere with epidermal entry and IT growth in the
RH of wild-type pea plant. Thus, apparently, any rhizobia
could enter the epidermis of their appropriate host without
an ethylene control.

The microsymbionts, by their physical presence, would
act upon the epidermis in a mechanical manner, dictating
Csk alterations that would allow the shepherd’s crook to
form (Catoira et al. 2001). In addition, enzymatic processes
would be involved to allow partial degradation of the epider-
mal wall (Mateos et al. 2001). The rhizobia would enter the
RH and progress within the IT to the epidermis. It is at the
interface of the epidermis and outermost cortical cell layer
that a tight control exists; this control is exemplified by the
pea mutant brz (Guinel and LaRue 1992; Resendes et al.
2001), the barrel medic mutant sickle (Penmetsa and Cook
1997), and the Lotus japonicus mutant Ljsym4-1 (Bonfante
et al. 2000). We propose that this checkpoint is under ethyl-
ene control; the regulation of this checkpoint will depend on
the levels of ethylene synthesized in the cortex and probably
present in the apoplast.

At this point, the fate of the infection would be decided
depending on the levels of ethylene (Lee and LaRue 1992c)
within the intercellular spaces. If these were low (less than
0.07 µL/L in pea), infection would be prone to progress with
the help of the reorganized Csk (Timmers 2000) and the pre-

viously formed PIT (van Brussel et al. 1992) in the cortex.
Higher levels of the hormone (e.g., 45 µL/L in pea) would
trigger enzymes such as peroxidase that would solidify the
IT matrix and prevent further growth of the IT (Wisniewski
et al. 2000); this implies the existence of a signal other than
ethylene moving from the apoplast to the epidermal
symplast. In natural conditions, the two processes responsi-
ble for either the success or the failure of IT growth could
occur simultaneously to autoregulate infection.

The ability of the cortex to make ethylene, and conversely
the incapacity of the epidermis to do so, fits with our hy-
pothesis of having two programs for nodule organogenesis.
The cortical program would be directly responsive to ethyl-
ene. NF, once added to the roots, would trigger ethylene
biosynthesis in the outer cortical cells where the hormone
would act on the Csk allowing the formation of PIT. In the
inner cortical cells, the hormone would alter the auxin to
cytokinin ratio by either inhibiting auxin transport (Abeles et
al. 1992) or regulating its activity or distribution (Luschnig
et al. 1998); this ratio alteration would stimulate the nodule
progenitor cells to divide. On the other hand, the epidermal
program would not be directly regulated by ethylene because
of the assumed lack of perception of this hormone by the
epidermis. Some ethylene would also be released in the
apoplast of the cortex; the fate of the infection would depend
on the levels of the hormone found there. Thus, direct effects
of ethylene in the cortex would result in a cascade of events
indirectly affecting the epidermis. The Csk rearrangement in
the epidermis (triggered by the rhizobia) will need to be co-
ordinated with that of the Csk in the cortex (triggered by the
chemical presence of the NF); the match between the rear-
ranged Csk of the two different types of cells would have to
be tightly orchestrated in the symplast. A mismatch could
lead to abortion of the infection.

The ethylene effect is dependent on the species
Although we know a great deal about the ethylene

biosynthetic pathway and transduction pathway in higher
plants, much remains a mystery about this simple hormone
(John 1997). For example, it is not understood why
nodulation in soybean appears to be insensitive to ethylene
(Lee and LaRue 1992c; Schmidt et al. 1999). Since the
mode of entry can be quite diverse depending on the
subfamilies of the species (Fig. 4), it is possible that the
response of the legumes to ethylene will also be diverse.

The nodulation of Sesbania is a good example that dem-
onstrates how ethylene can have different effects (D’Haeze
2001). As mentioned above, in this species, nodules can
form on the roots or on the stems, although the stem nodules
are in fact found on adventitious roots emerging from the
stem. Rhizobia enter the root by crack entry at the site of
root emergence (Fig. 4E). For nodules to form in Sesbania,
axillary RH and infection pockets, formed by local plant cell
death, are required. D’Haeze (2001) showed that ethylene,
hydrogen peroxide, and NF are required for these two
events; calcium appears to be needed also. He proposed that
NF triggers an oxidative burst in the root, which will be
responsible for ethylene and hydrogen peroxide production.
These two compounds formed in the extracellular space
induce plant cell death in the inner cortex of the root and the
formation of infection pockets; these steps are required for
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the initiation of an NP. Therefore, ethylene is essential for
this species to nodulate. What is also interesting is that the
epidermis is not necessary here; the cortical cells are the tar-
get for the NF and the rhizobia.

Thus, it would be worthwhile to look at many more
legume species and study the effects of ethylene on their
nodulation. We agree with Sprent and de Faria (1988); the
iceberg we are studying has many tips and we have just
begun to unravel the physiology of the establishment of the
symbioses, and this only in a few species.
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