56 research outputs found

    PU.1 controls fibroblast polarization and tissue fibrosis

    Get PDF
    Fibroblasts are polymorphic cells with pleiotropic roles in organ morphogenesis, tissue homeostasis and immune responses. In fibrotic diseases, fibroblasts synthesize abundant amounts of extracellular matrix, which induces scarring and organ failure. By contrast, a hallmark feature of fibroblasts in arthritis is degradation of the extracellular matrix because of the release of metalloproteinases and degrading enzymes, and subsequent tissue destruction. The mechanisms that drive these functionally opposing pro-fibrotic and pro-inflammatory phenotypes of fibroblasts remain unknown. Here we identify the transcription factor PU.1 as an essential regulator of the pro-fibrotic gene expression program. The interplay between transcriptional and post-transcriptional mechanisms that normally control the expression of PU.1 expression is perturbed in various fibrotic diseases, resulting in the upregulation of PU.1, induction of fibrosis-associated gene sets and a phenotypic switch in extracellular matrix-producing pro-fibrotic fibroblasts. By contrast, pharmacological and genetic inactivation of PU.1 disrupts the fibrotic network and enables reprogramming of fibrotic fibroblasts into resting fibroblasts, leading to regression of fibrosis in several organs

    Transit of H2O2 across the endoplasmic reticulum membrane is not sluggish

    Get PDF
    Cellular metabolism provides various sources of hydrogen peroxide (H2O2) in different organelles and compartments. The suitability of H2O2 as an intracellular signaling molecule therefore also depends on its ability to pass cellular membranes. The propensity of the membranous boundary of the endoplasmic reticulum (ER) to let pass H2O2 has been discussed controversially. In this essay, we challenge the recent proposal that the ER membrane constitutes a simple barrier for H2O2 diffusion and support earlier data showing that (i) ample H2O2 permeability of the ER membrane is a prerequisite for signal transduction, (ii) aquaporin channels are crucially involved in the facilitation of H2O2 permeation, and (iii) a proper experimental framework not prone to artifacts is necessary to further unravel the role of H2O2 permeation in signal transduction and organelle biology. © 2016 Elsevier Inc

    Discovery of the pseudomonas polyyne protegencin by a phylogeny-guided study of polyyne biosynthetic gene cluster diversity

    Get PDF
    Natural products that possess alkyne or polyyne moieties have been isolated from a variety of biological sources and possess a broad a range of bioactivities. In bacteria, the basic biosynthesis of polyynes is known, but their biosynthetic gene cluster (BGC) distribution and evolutionary relationship to alkyne biosynthesis have not been addressed. Through comprehensive genomic and phylogenetic analyses, the distribution of alkyne biosynthesis gene cassettes throughout bacteria was explored, revealing evidence of multiple horizontal gene transfer events. After investigation of the evolutionary connection between alkyne and polyyne biosynthesis, a monophyletic clade was identified that possessed a conserved seven-gene cassette for polyyne biosynthesis that built upon the conserved three-gene cassette for alkyne biosynthesis. Further diversity mapping of the conserved polyyne gene cassette revealed a phylogenetic subclade for an uncharacterized polyyne BGC present in several Pseudomonas species, designated pgn. Pathway mutagenesis and high-resolution analytical chemistry showed the Pseudomonas protegens pgn BGC directed the biosynthesis of a novel polyyne, protegencin. Exploration of the biosynthetic logic behind polyyne production, through BGC mutagenesis and analytical chemistry, highlighted the essentiality of a triad of desaturase proteins and a thioesterase in both the P. protegens pgn and Trinickia caryophylli (formerly Burkholderia caryophylli) caryoynencin pathways. We have unified and expanded knowledge of polyyne diversity and uniquely demonstrated that alkyne and polyyne biosynthetic gene clusters are evolutionarily related and widely distributed within bacteria. The systematic mapping of conserved biosynthetic genes across the available bacterial genomic diversity proved to be a fruitful method for discovering new natural products and better understanding polyyne biosynthesis. IMPORTANCE Natural products bearing alkyne (triple carbon bond) or polyyne (multiple alternating single and triple carbon bonds) moieties exhibit a broad range of important biological activities. Polyyne metabolites have been implicated in important ecological roles such as cepacin mediating biological control of plant pathogens and caryoynencin protecting Lagriinae beetle eggs against pathogenic fungi. After further phylogenetic exploration of polyyne diversity, we identified a novel gene cluster in Pseudomonas bacteria with known biological control abilities and proved it was responsible for synthesizing a new polyyne metabolite, protegencin. The evolutionary analysis of polyyne pathways showed that multiple biosynthetic genes were conserved, and using mutagenesis, their essentiality was demonstrated. Our research provides a foundation for the future modification of polyyne metabolites and has identified a novel polyyne, protegencin, with potential bioactive roles of ecological and agricultural importance

    Gephyrin phosphorylation in the functional organization and plasticity of GABAergic synapses

    Get PDF
    Gephyrin is a multifunctional scaffold protein essential for accumulation of inhibitory glycine and GABAA receptors at post-synaptic sites. The molecular events involved in gephyrin-dependent GABAA receptor clustering are still unclear. Evidence has been recently provided that gephyrin phosphorylation plays a key role in these processes. Gephyrin post-translational modifications have been shown to influence the structural remodeling of GABAergic synapses and synaptic plasticity by acting on post-synaptic scaffolding properties as well as stability. In addition, gephyrin phosphorylation and the subsequent phosphorylation-dependent recruitment of the chaperone molecule Pin1 provide a mechanism for the regulation of GABAergic signaling. Extensively characterized as pivotal enzyme controlling cell proliferation and differentiation, the prolyl-isomerase activity of Pin1 has been shown to regulate protein synthesis necessary to sustain the late phase of long-term potentiation at excitatory synapses, which suggests its involvement at synaptic sites. In this review we summarize the current state of knowledge of the signaling pathways responsible for gephyrin post-translational modifications. We will also outline future lines of research that might contribute to a better understanding of molecular mechanisms by which gephyrin regulates synaptic plasticity at GABAergic synapses. \ua9 2014 Zacchi, Antonelli and Cherubini

    Pulmonary endoplasmic reticulum stress-scars, smoke, and suffocation.

    Get PDF
    Protein misfolding within the endoplasmic reticulum (ER stress) can be a cause or consequence of pulmonary disease. Mutation of proteins restricted to the alveolar type II pneumocyte can lead to inherited forms of pulmonary fibrosis, but even sporadic cases of pulmonary fibrosis appear to be strongly associated with activation of the unfolded protein response and/or the integrated stress response. Inhalation of smoke can impair protein folding and may be an important cause of pulmonary ER stress. Similarly, tissue hypoxia can lead to impaired protein homeostasis (proteostasis). But the mechanisms linking smoke and hypoxia to ER stress are only partially understood. In this review, we will examine the role of ER stress in the pathogenesis of lung disease by focusing on fibrosis, smoke, and hypoxia

    Redox homeostasis and age-related deficits in neuromuscular integrity and function

    Get PDF
    Skeletal muscle is a major site of metabolic activity and is the most abundant tissue in the human body. Age-related muscleatrophy (sarcopenia) and weakness, characterized by progressive loss of lean muscle mass and function, is a major contributorto morbidity and has a profound effect on the quality of life of older people. With a continuously growing older population(estimated 2 billion of people aged >60 by 2050), demand for medical and social care due to functional deficits, associatedwith neuromuscular ageing, will inevitably increase. Desp ite the importance of this ‘epidemic’ problem, the primarybiochemical and molecular mechanisms underlying age-related deficits in neuromuscular integrity and function have not beenfully determined. Skeleta l muscle generates reactive oxygen and nitrogen species (RONS) from a variety of subcellular sources,and age-associated oxidative damage has been suggested to be a major fac tor contributing to the initiation and progression ofmuscle atrophy inherent with ageing. RONS can modulate a variety of intracellular signal transduction processes, anddisruption of these events over time due to altered redox control has been proposed as an underlying mechanis m of ageing.The role of oxidants in ageing has been extensively examined in different model organisms that have undergone geneticmanipulations with inconsistent findings. Transgenic and knockout rodent studies have provided insight into the function ofRONS regulatory systems in neuromuscular ageing. This review summarizes almost 30 years of research in the field of redoxhomeostasis and muscle ageing, providing a detailed discussion of the experimental approaches that have been undertaken inmurine models to examine the role of redox regulation in age-related muscle atrophy and weakness
    corecore