409 research outputs found
Histiocytoid cardiomyopathy and microphthalmia with linear skin defects syndrome: phenotypes linked by truncating variants in NDUFB11
Variants in NDUFB11, which encodes a structural component of complex I of the mitochondrial respiratory chain (MRC), were recently independently reported to cause histiocytoid cardiomyopathy (histiocytoid CM) and microphthalmia with linear skin defects syndrome (MLS syndrome). Here we report an additional case of histiocytoid CM, which carries a de novo nonsense variant in NDUFB11 (ENST00000276062.8: c.262C > T; p.[Arg88*]) identified using whole-exome sequencing (WES) of a family trio. An identical variant has been previously reported in association with MLS syndrome. The case we describe here lacked the diagnostic features of MLS syndrome, but a detailed clinical comparison of the two cases revealed significant phenotypic overlap. Heterozygous variants in HCCS (which encodes an important mitochondrially targeted protein) and COX7B, which, like NDUFB11, encodes a protein of the MRC, have also previously been identified in MLS syndrome including a case with features of both MLS syndrome and histiocytoid CM. However, a systematic review of WES data from previously published histiocytoid CM cases, alongside four additional cases presented here for the first time, did not identify any variants in these genes. We conclude that NDUFB11 variants play a role in the pathogenesis of both histiocytoid CM and MLS and that these disorders are allelic (genetically related)
The M18 aspartyl aminopeptidase of Plasmodium falciparum binds to human erythrocyte spectrin in vitro
<p>Abstract</p> <p>Background</p> <p>During erythrocytic schizogony, <it>Plasmodium falciparum </it>interacts with the human erythrocyte membrane when it enters into, grows within and escapes from the erythrocyte. An interaction between the <it>P. falciparum </it>M18 aspartyl aminopeptidase (<it>Pf</it>M18AAP) and the human erythrocyte membrane protein spectrin was recently identified using phage display technology. In this study, recombinant (r) <it>Pf</it>M18AAP was characterized and the interaction between the enzyme and spectrin, as well as other erythrocyte membrane proteins, analyzed.</p> <p>Methods</p> <p>r<it>Pf</it>M18AAP was produced as a hexahistidine-fusion protein in <it>Escherichia coli </it>and purified using magnetic bead technology. The pI of the enzyme was determined by two-dimensional gel electrophoresis and the number of subunits in the native enzyme was estimated from Ferguson plots. The enzymatic activity over a pH and temperature range was tested by a coupled enzyme assay. Blot overlays were performed to validate the spectrin-<it>Pf</it>M18AAP interaction, as well as identify additional interactions between the enzyme and other erythrocyte membrane proteins. Sequence analysis identified conserved amino acids that are expected to be involved in cofactor binding, substrate cleavage and quaternary structure stabilization.</p> <p>Results</p> <p>r<it>Pf</it>M18AAP has a molecular weight of ~67 kDa and the enzyme separated as three entities with pI 6.6, 6.7 and 6.9. Non-denaturing gel electrophoresis indicated that r<it>Pf</it>M18AAP aggregated into oligomers. An <it>in vitro </it>coupled enzyme assay showed that r<it>Pf</it>M18AAP cleaved an N-terminal aspartate from a tripeptide substrate with maximum enzymatic activity at pH 7.5 and 37°C. The spectrin-binding region of <it>Pf</it>M18AAP is not found in <it>Homo sapiens, Saccharomyces cerevisiae </it>and other<it>Plasmodium </it>species homologues. Amino acids expected to be involved in cofactor binding, substrate cleavage and quaternary structure stabilization, are conserved. Blot overlays with r<it>Pf</it>M18AAP against spectrin and erythrocyte membrane proteins indicated that r<it>Pf</it>M18AAP binds to spectrin, as well as to protein 4.1, protein 4.2, actin and glyceraldehyde 3-phosphate dehydrogenase.</p> <p>Conclusion</p> <p>Studies characterizing r<it>Pf</it>M18AAP showed that this enzyme interacts with erythrocyte spectrin and other membrane proteins. This suggests that, in addition to its proposed role in hemoglobin digestion, <it>Pf</it>M18AAP performs other functions in the erythrocyte host and can utilize several substrates, which highlights the multifunctional role of malaria enzymes.</p
Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function.
BACKGROUND: Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function.
METHODS: We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis.
RESULTS: The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P = 5.71 × 10(-7)). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P = 2.18 × 10(-8)) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively.
CONCLUSIONS: In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function
Evolutionary Genomics of a Temperate Bacteriophage in an Obligate Intracellular Bacteria (Wolbachia)
Genome evolution of bacteria is usually influenced by ecology, such that bacteria with a free-living stage have large genomes and high rates of horizontal gene transfer, while obligate intracellular bacteria have small genomes with typically low amounts of gene exchange. However, recent studies indicate that obligate intracellular species that host-switch frequently harbor agents of horizontal transfer such as mobile elements. For example, the temperate double-stranded DNA bacteriophage WO in Wolbachia persistently transfers between bacterial coinfections in the same host. Here we show that despite the phage's rampant mobility between coinfections, the prophage's genome displays features of constraint related to its intracellular niche. First, there is always at least one intact prophage WO and usually several degenerate, independently-acquired WO prophages in each Wolbachia genome. Second, while the prophage genomes are modular in composition with genes of similar function grouping together, the modules are generally not interchangeable with other unrelated phages and thus do not evolve by the Modular Theory. Third, there is an unusual core genome that strictly consists of head and baseplate genes; other gene modules are frequently deleted. Fourth, the prophage recombinases are diverse and there is no conserved integration sequence. Finally, the molecular evolutionary forces acting on prophage WO are point mutation, intragenic recombination, deletion, and purifying selection. Taken together, these analyses indicate that while lateral transfer of phage WO is pervasive between Wolbachia with occasional new gene uptake, constraints of the intracellular niche obstruct extensive mixture between WO and the global phage population. Although the Modular Theory has long been considered the paradigm of temperate bacteriophage evolution in free-living bacteria, it appears irrelevant in phages of obligate intracellular bacteria
What Do We Know About Neuropsychological Aspects Of Schizophrenia?
Application of a neuropsychological perspective to the study of schizophrenia has established a number of important facts about this disorder. Some of the key findings from the existing literature are that, while neurocognitive impairment is present in most, if not all, persons with schizophrenia, there is both substantial interpatient heterogeneity and remarkable within-patient stability of cognitive function over the long-term course of the illness. Such findings have contributed to the firm establishment of neurobiologic models of schizophrenia, and thereby help to reduce the social stigma that was sometimes associated with purely psychogenic models popular during parts of the 20th century. Neuropsychological studies in recent decades have established the primacy of cognitive functions over psychopathologic symptoms as determinants of functional capacity and independence in everyday functioning. Although the cognitive benefits of both conventional and even second generation antipsychotic medications appear marginal at best, recognition of the primacy of cognitive deficits as determinants of functional disability in schizophrenia has catalyzed recent efforts to develop targeted treatments for the cognitive deficits of this disorder. Despite these accomplishments, however, some issues remain to be resolved. Efforts to firmly establish the specific neurocognitive/neuropathologic systems responsible for schizophrenia remain elusive, as do efforts to definitively demonstrate the specific cognitive deficits underlying specific forms of functional impairment. Further progress may be fostered by recent initiatives to integrate neuropsychological studies with experimental neuroscience, perhaps leading to measures of deficits in cognitive processes more clearly associated with specific, identifiable brain systems
Interpreting ancient food practices:Stable isotope and molecular analyses of visible and absorbed residues from a year-long cooking experiment
Chemical analyses of carbonized and absorbed organic residues from archaeological ceramic cooking vessels can provide a unique window into the culinary cultures of ancient people, resource use, and environmental effects by identifying ingredients used in ancient meals. However, it remains uncertain whether recovered organic residues represent only the final foodstuffs prepared or are the accumulation of various cooking events within the same vessel. To assess this, we cooked seven mixtures of C3 and C4 foodstuffs in unglazed pots once per week for one year, then changed recipes between pots for the final cooking events. We conducted bulk stable-isotope analysis and lipid residue analysis on the charred food macro-remains, carbonized thin layer organic patina residues and absorbed lipids over the course of the experiment. Our results indicate that: (1) the composition of charred macro-remains represent the final foodstuffs cooked within vessels, (2) thin-layer patina residues represent a mixture of previous cooking events with bias towards the final product(s) cooked in the pot, and (3) absorbed lipid residues are developed over a number of cooking events and are replaced slowly over time, with little evidence of the final recipe ingredients
A Systematic Screen for Tube Morphogenesis and Branching Genes in the Drosophila Tracheal System
Many signaling proteins and transcription factors that induce and pattern organs have been identified, but relatively few of the downstream effectors that execute morphogenesis programs. Because such morphogenesis genes may function in many organs and developmental processes, mutations in them are expected to be pleiotropic and hence ignored or discarded in most standard genetic screens. Here we describe a systematic screen designed to identify all Drosophila third chromosome genes (∼40% of the genome) that function in development of the tracheal system, a tubular respiratory organ that provides a paradigm for branching morphogenesis. To identify potentially pleiotropic morphogenesis genes, the screen included analysis of marked clones of homozygous mutant tracheal cells in heterozygous animals, plus a secondary screen to exclude mutations in general “house-keeping” genes. From a collection including more than 5,000 lethal mutations, we identified 133 mutations representing ∼70 or more genes that subdivide the tracheal terminal branching program into six genetically separable steps, a previously established cell specification step plus five major morphogenesis and maturation steps: branching, growth, tubulogenesis, gas-filling, and maintenance. Molecular identification of 14 of the 70 genes demonstrates that they include six previously known tracheal genes, each with a novel function revealed by clonal analysis, and two well-known growth suppressors that establish an integral role for cell growth control in branching morphogenesis. The rest are new tracheal genes that function in morphogenesis and maturation, many through cytoskeletal and secretory pathways. The results suggest systematic genetic screens that include clonal analysis can elucidate the full organogenesis program and that over 200 patterning and morphogenesis genes are required to build even a relatively simple organ such as the Drosophila tracheal system
Measurement of the W±Z boson pair-production cross section in pp collisions at √s=13TeV with the ATLAS detector
published_or_final_versio
Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ* → 4ℓ decay channels at s=13 TeV with the ATLAS detector
A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb−1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured H→γγ and H→ZZ*(→4ℓ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0−5.9 +6.0 (stat.) −3.3 +4.0 (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions
Search for High-Mass Resonances Decaying to τν in pp Collisions at √s=13 TeV with the ATLAS Detector
A search for high-mass resonances decaying to τν using proton-proton collisions at √s=13 TeV produced by the Large Hadron Collider is presented. Only τ-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb−1. No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible τν production cross section. Heavy W′ bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal G(221) model are excluded at the 95% credibility level
- …