71 research outputs found

    Circulating microRNAs Reveal Time Course of Organ Injury in a Porcine Model of Acetaminophen-Induced Acute Liver Failure

    Get PDF
    Acute liver failure is a rare but catastrophic condition which can progress rapidly to multi-organ failure. Studies investigating the onset of individual organ injury such as the liver, kidneys and brain during the evolution of acute liver failure, are lacking. MicroRNAs are short, non-coding strands of RNA that are released into the circulation following tissue injury. In this study, we have characterised the release of both global microRNA and specific microRNA species into the plasma using a porcine model of acetaminophen-induced acute liver failure. Pigs were induced to acute liver failure with oral acetaminophen over 19h±2h and death occurred 13h±3h thereafter. Global microRNA concentrations increased 4h prior to acute liver failure in plasma (P<0.0001) but not in isolated exosomes, and were associated with increasing plasma levels of the damage-associated molecular pattern molecule, genomic DNA (P<0.0001). MiR122 increased around the time of onset of acute liver failure (P<0.0001) and was associated with increasing international normalised ratio (P<0.0001). MiR192 increased 8h after acute liver failure (P<0.0001) and was associated with increasing creatinine (P<0.0001). The increase in miR124-1 occurred concurrent with the pre-terminal increase in intracranial pressure (P<0.0001) and was associated with decreasing cerebral perfusion pressure (P<0.002)

    Long-term follow-up on the use of vascularized fibular graft for the treatment of congenital pseudarthrosis of the tibia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Congenital pseudoarthrosis of the tibia (CPT) is one of the most difficult conditions to treat.</p> <p>Methods</p> <p>Five girls and 3 boys with CPT were treated by vascularized fibular grafting (VFG). The average age at VFG was 7.0 years (range: 1.9–11.5 years) with an average follow-up term of 11.7 years (range: 4.9–19.6 years). Five of the children had undergone multiple operations before VFG, while the other 3 had no such history.</p> <p>Results</p> <p>Bone consolidation was obtained in all cases after an average term of 6.6 months (range: 4–10 months); this was with the first VFG in 7 cases but with the second VFG in 1 case. Complication of stress fracture and ankle pain occurred in 1 and 3 cases, respectively, only in cases undergoing multiple operations. Leg-length discrepancy was more prominent in the patients with multiple previous operations (mean: 7.5 cm), than in the cases with no prior surgery (mean: 0.7 cm).</p> <p>Conclusion</p> <p>The long-term results of VFG for CPT were excellent, especially in the cases, with no prior surgery. VFG should be considered as a primary treatment option for CPT.</p

    Distinguishing Asthma Phenotypes Using Machine Learning Approaches.

    Get PDF
    Asthma is not a single disease, but an umbrella term for a number of distinct diseases, each of which are caused by a distinct underlying pathophysiological mechanism. These discrete disease entities are often labelled as asthma endotypes. The discovery of different asthma subtypes has moved from subjective approaches in which putative phenotypes are assigned by experts to data-driven ones which incorporate machine learning. This review focuses on the methodological developments of one such machine learning technique-latent class analysis-and how it has contributed to distinguishing asthma and wheezing subtypes in childhood. It also gives a clinical perspective, presenting the findings of studies from the past 5 years that used this approach. The identification of true asthma endotypes may be a crucial step towards understanding their distinct pathophysiological mechanisms, which could ultimately lead to more precise prevention strategies, identification of novel therapeutic targets and the development of effective personalized therapies

    MMP-9 gene variants increase the risk for non-atopic asthma in children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atopic and non-atopic wheezing may be caused by different etiologies: while eosinophils are more important in atopic asthmatic wheezers, neutrophils are predominantly found in BAL samples of young children with wheezing. Both neutrophils as well as eosinophils may secrete matrix metalloproteinase 9 (MMP-9). Considering that MMP-9 plays an important role in airway wall thickening and airway inflammation, it may influence the development of obstructive airway phenotypes in children. In the present study we investigated whether genetic variations in <it>MMP-9 </it>influence the development of different forms of childhood asthma.</p> <p>Methods</p> <p>Genotyping of four HapMap derived tagging SNPs in the <it>MMP-9 </it>gene was performed using MALDI-TOF MS in three cross sectional study populations of German children (age 9-11; N = 4,264) phenotyped for asthma and atopic diseases according to ISAAC standard procedures. Effects of single SNPs and haplotypes were studied using SAS 9.1.3 and Haploview.</p> <p>Results</p> <p>SNP rs2664538 significantly increased the risk for non-atopic wheezing (OR 2.12, 95%CI 1.40-3.21, p < 0.001) and non-atopic asthma (OR 1.66, 95%CI 1.12-2.46, p = 0.011). Furthermore, the minor allele of rs3918241 may be associated with decreased expiratory flow measurements in non-atopic children. No significant effects on the development of atopy or total serum IgE levels were observed.</p> <p>Conclusions</p> <p>Our results have shown that homozygocity for <it>MMP-9 </it>variants increase the risk to develop non-atopic forms of asthma and wheezing, which may be explained by a functional role of MMP-9 in airway remodeling. These results suggest that different wheezing disorders in childhood are affected differently by genetic alterations.</p

    Dopamine Transporter and Reward Anticipation in a Dimensional Perspective : A Multimodal Brain Imaging Study

    Get PDF
    We would like to thank Christine Baron, Vincent Brulon, Stéphane LeHelleix, Stéphane Demphel, Claude Comtat, Frédéric Dollé, Philippe Gervais, and Renaud Maroy from the Service Hospitalier Frédéric Joliot for their efficient technical support and 11C radioligand preparation. They thank Marie Prat, Audrey Pepin, and Audrey Mabondo for their help in PET processing and Pr. Maria-Joao Santiago-Ribeiro and Dr Renaud de Beaurepaire for their involvement in the recruitment of participants.Peer reviewedPostprin

    Pegylated Interferon and Ribavirin Dosing Strategies to Enhance Sustained Virologic Response

    Get PDF
    Hepatitis C virus (HCV) affects about 170 million people worldwide and is the most common chronic blood borne infection in the United States. Since the advent of blood screening protocols in the early 1990s, injection drug use has become the leading cause of infection. Hepatitis C can have both hepatic and nonhepatic manifestations of infection. Hepatic manifestations include hepatic fibrosis, cirrhosis, liver cancer, and liver failure. The standard treatment for chronic HCV is combination therapy with pegylated interferon-α and ribavirin. Although pegylated interferon and ribavirin has been used against HCV for close to a decade, advances in therapy have centered on doses and treatment durations. There has been increasing interest in applying on-treatment response or viral kinetics to predict antiviral response rates and shape therapeutic intervention. Protease inhibitors are a promising adjuvant to combination therapy, but their efficacy and safety are still under investigation

    Spatial analysis of air pollution and childhood asthma in Hamilton, Canada: comparing exposure methods in sensitive subgroups

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variations in air pollution exposure within a community may be associated with asthma prevalence. However, studies conducted to date have produced inconsistent results, possibly due to errors in measurement of the exposures.</p> <p>Methods</p> <p>A standardized asthma survey was administered to children in grades one and eight in Hamilton, Canada, in 1994–95 (N ~1467). Exposure to air pollution was estimated in four ways: (1) distance from roadways; (2) interpolated surfaces for ozone, sulfur dioxide, particulate matter and nitrous oxides from seven to nine governmental monitoring stations; (3) a kriged nitrogen dioxide (NO<sub>2</sub>) surface based on a network of 100 passive NO<sub>2 </sub>monitors; and (4) a land use regression (LUR) model derived from the same monitoring network. Logistic regressions were used to test associations between asthma and air pollution, controlling for variables including neighbourhood income, dwelling value, state of housing, a deprivation index and smoking.</p> <p>Results</p> <p>There were no significant associations between any of the exposure estimates and asthma in the whole population, but large effects were detected the subgroup of children without hayfever (predominately in girls). The most robust effects were observed for the association of asthma without hayfever and NO<sub>2</sub>LUR OR = 1.86 (95%CI, 1.59–2.16) in all girls and OR = 2.98 (95%CI, 0.98–9.06) for older girls, over an interquartile range increase and controlling for confounders.</p> <p>Conclusion</p> <p>Our findings indicate that traffic-related pollutants, such as NO<sub>2</sub>, are associated with asthma without overt evidence of other atopic disorders among female children living in a medium-sized Canadian city. The effects were sensitive to the method of exposure estimation. More refined exposure models produced the most robust associations.</p

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    corecore