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Abstract Asthma is not a single disease, but an umbrella term
for a number of distinct diseases, each of which are caused by
a distinct underlying pathophysiological mechanism. These
discrete disease entities are often labelled as ‘asthma
endotypes’. The discovery of different asthma subtypes has
moved from subjective approaches in which putative pheno-
types are assigned by experts to data-driven ones which incor-
porate machine learning. This review focuses on the method-
ological developments of one such machine learning tech-
nique—latent class analysis—and how it has contributed to
distinguishing asthma and wheezing subtypes in childhood. It
also gives a clinical perspective, presenting the findings of
studies from the past 5 years that used this approach. The
identification of true asthma endotypes may be a crucial step
towards understanding their distinct pathophysiological
mechanisms, which could ultimately lead to more precise

prevention strategies, identification of novel therapeutic tar-
gets and the development of effective personalized therapies.
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Introduction

Asthma is increasingly recognized as a heterogeneous condi-
tion [1], an umbrella diagnosis for several diseases which
present with common symptoms such as wheeze and cough,
but differ in their aetiology, pathogenesis and responses to
treatment (Fig. 1) [2–9]. These variants of asthma have been
described as ‘asthma endotypes’ [10, 11]. Unlike phenotypes,
which are defined by sharing similar observable characteris-
tics, endotypes may be defined as subtypes of a condition with
overlapping clinical symptoms, but each being caused by a
distinct underlying pathophysiological mechanism [10]
(Fig. 1).

At this moment, ‘asthma endotype’ is predominantly a hy-
pothetical construct which has a potential value in helping us
to uncover the mechanisms underlying different diseases in
the ‘asthma syndrome’ [12]. Unravelling unique mechanisms
for each asthma endotype may improve our understanding of
the natural history of these diseases and ultimately could lead
to more precise (possibly mechanism-specific) prevention
strategies and may be crucial for the development of more
effective personalized therapies and stratified health care [7,
8, 12, 13•]. For this to be feasible, amongst patients with the
diagnostic label of ‘asthma’, it will be necessary to distinguish
between different endotypes more precisely and in an unbi-
asedway, as opposed to the currently prevailing classifications
based on simple clinical phenotypic characteristics which usu-
ally focus on a single dimension of the disease (such as
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eosinophilic or neutrophilic inflammation). One of the obsta-
cles to this approach is that the information domains from
which endotypes should be identified are not well defined.
This, in conjunction with the persistence of different defini-
tions of asthma in the medical literature affects the perfor-
mance of prediction models [12, 14].

Investigator-Imposed vs. Data-Driven Approaches
to Subtyping Asthma

The current approaches used to classify patients into asthma
sub-groups can be split into two main types: subjective (i.e.
investigator-imposed) and data-driven. The former is often
referred to as being hypothesis-driven, and the latter as
hypothesis-generating. In most subjective approaches, an in-
vestigator (usually an expert in the field) reviews the patterns
of change in an individual’s symptoms, triggers, pathology or
airway obstruction, and then classifies patients into different
‘phenotypes’. An example of this approach which withstood
the test of time is a seminal publication from the Tucson Chil-
dren’s Respiratory Study, which described phenotypes of
wheezing illness in pre-school children based on clinical as-
sessment of whether a child had wheezed in the previous
12 months at ages 3 and 6 years [15]. The children with
wheezing were assigned to three phenotypes: transient early
wheezers, late-onset wheezers and persistent wheezers. How-
ever, by using this approach, one cannot estimate the uncer-
tainty of phenotype classification. The research in this area has
therefore moved on from using classifications predetermined
by experts towards data-driven methodologies. Such ap-
proaches incorporate statistical learning techniques, facilitat-
ing the exploration of high dimensional clinical data sets.
Here, we review the last 5 years of developments of latent
variable modelling techniques—specifically, the latent class
analysis (LCA) [16]—through which the dimensionality of
the data sets can be reduced and variables can be grouped into

patterns. We will describe the main cohorts used in cited stud-
ies and discuss issues related to the analytical approaches used
in different studies (such as model definition and parameter
estimation, model selection and class assignment) and the ad-
vantages and disadvantages of cross-sectional vs. longitudinal
LCA approaches.

Background on Latent Class Analysis

Model Definition and Parameter Estimation:
Which Classes?

Latent class analysis aims to fit a probabilistic model to data
containing observable variables such as asthma symptoms
(e.g. wheeze and/or cough) or atopic sensitization (e.g. serum
specific IgE levels and skin prick tests): the observed variables
are considered to be imperfect indicators of a set of unob-
served latent variables. The assumption underpinning LCA
is that all associations amongst the observed variables are
due to the unobserved latent classes. The probabilistic model
used for LCA is often referred to as a mixture model, because
the probability of the observed data is a weighted sum, or
mixture, of the data probability for each latent class. The
weights of the mixture are the prior probabilities of each latent
class, i.e. the chance to observe that class in the overall pop-
ulation. Latent classes are derived entirely from the observed
data in an unsupervised manner [17, 18]. The subjects
assigned to each class will be similar to each other according
to the descriptor variables used, and the latent classes should
correspond to clusters of similar subjects. LCA has been
shown to be appropriate for modelling data on the occurrence
or absence of symptoms in heterogeneous diseases such as
asthma [3, 19–21], with the assumption that the co-
occurrence of symptoms within the resulting latent classes is
the consequence of unique disease-specific mechanisms, and
that therefore the latent classes may be regarded as bona fide
asthma endotypes.

In order to produce the latent classes, the model estimates
two important quantities:

1. Conditional probability of each variable’s response within
each class.

2. Posterior probabilities of class membership for each sub-
ject given their response history.

Parameter estimation in the LCA (e.g. weights of the
mixtures or average variable values in a class) can be done
via different methods, one of the most popular being the
expectation-maximization (EM) algorithm. In EM, two
distinct steps (called E- and M-step) iteratively find the
best parameter set by using a current (best guess) estima-
tion on unseen data and improving the estimate by
recalculating its likelihood (i.e. how well the model

Figure 1 Asthma: an umbrella diagnosis which comprises multiple
diseases with distinct mechanisms
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fits/explains data points) on observed data, until the two
estimates do not converge to the same value. It is typically
assumed that each class has a characteristic distribution of
the key variables modelled by some parameterized densi-
ty function [22]. Often, the choice of class density func-
tion is restricted by the need for the EM optimization
scheme to be tractable, e.g. class distributions from the
exponential family are often chosen since the M-step of
the EM algorithm is exactly tractable in this case. An
alternative estimation procedure that has been used is
the approximate Bayesian approach of variational mes-
sage passing [23, 24, 25•].

Themodels typically used for LCA assume conditional
independence of observed variables within each latent
class, which is a strong assumption. Original data may
be reduced into independent components (thus reducing
the original number of variables) using techniques such as
principal component analysis (PCA), exploratory factor
analysis or multiple correspondence analysis [26], as var-
iables representing the same dimensions are thought to be
likely to be dependent within all identified latent classes.
These variables are also typically required to be categor-
ical, not continuous. Additionally, covariates such as sex
effects can be (and have been) estimated [27, 28•].

Model Selection: How Many Classes?

The EM-algorithm can be used to learn the model parameters.
However, this leaves the problem of choosing the optimal
number of latent classes. This model selection problem is
much more challenging than parameter estimation. It cannot
be solved by simply maximizing the data likelihood: it is
always true that a more complex model (i.e. more parameters)
can achieve the same or higher likelihood than a simpler mod-
el (i.e. less parameters). Therefore, it is necessary to account
for such model complexity (the number of free parameters)
when selecting the optimal model.

There is not yet a single agreed method that determines the
optimal number of latent classes for a model [29], although
some methods are better suited for specific cases (or more
popular) than others. Often, a variety of different model selec-
tion procedures are used, with their results compared and
interpreted to help determine the model with the best number
of classes. The most popular method used amongst the litera-
ture we reviewed was the Bayesian Information Criterion
(BIC) [20, 21, 26, 27, 28•, 30••, 31, 32••, 33•, 34–37] along
with some variations on its original formulation [28•, 38]. The
function combines a model’s log-likelihood value which is
penalized by the number of parameters [39]—namely, the
model log-likelihood is penalized by subtracting a quantity
proportional to the number of parameters times the logarithm
of the sample size—where the penalty can be interpreted in a

Bayesian fashion. Complex models are penalized to avoid
over-fitting, and parsimony is rewarded [40]. The model with
the lowest BIC value is considered the best-fitting model and
is usually selected [32••]. Its solution can depend on the sam-
ple size and the starting value. To account for the former, the
algorithm can be adjusted [37]. To negate the latter, analyses
are often rerun with many different starting values to confirm
stable solutions and to avoid local maxima [37, 41]. The BIC
is currently regarded as one of the most efficient in-sample
estimators [31, 38] that does not require an external test set.

Another popular method is the Akaike Information Crite-
rion (AIC) [26, 27, 28•, 42••], which is very similar to the BIC.
The former uses a smaller penalty term for the number of
parameters in a model [43]—i.e. only the number of parame-
ters, without accounting for the sample size. An adjusted ver-
sion was also used [28•, 38]. As with the BIC, a lower value
indicates a superior model [16].

The next most popular methods are likelihood ratio tests
[44] (bootstrap [21, 28•, 30••, 31, 33•, 34, 35], Lo-Mendell-
Rubin [28•, 45•, 46] and chi-squared [36]), all of which are
parametric [22, 38]. These test an improvement in fit between
models with n vs. n+1 classes, resulting in a fit index [41]. For
the tests that assume a chi-squared distribution, their results
may be affected by sample sizes as the test statistic follows the
distribution asymptotically. The bootstrap likelihood ratio test
instead constructs a distribution using parametric bootstrap
approach and as such should be less affected by sample sizes
[22, 31].

Other methods used to select the models used include en-
tropy [21, 27, 28•, 42••, 45•], the Bezdek partition coefficient
[26], confusion matrices [23] and a dissimilarity index [36].
More recently, Bayesian latent variable methods closely relat-
ed to LCA have also been introduced which allow models to
be selected using the Bayesian evidence (also referred to as the
Marginal likelihood) [47].

The selected model’s resulting classes are interpreted as
distinct subtypes, characterized by the model variables that
apply best to each class. Because of this, classes that share
very similar model variable characteristics are interpreted as
representing very similar phenotypes and so are often merged
in favour of fewer classes [31].

Class Assignment: How Are (New) Subjects Assigned
to the Latent Class?

For each subject, the probability of belonging to each of the
latent classes is calculated. In a process called modal alloca-
tion, each subject is assigned to the latent class with the largest
a posteriori probability of membership [19]. A classification is
supported by high membership probabilities, indicating good
separation between clusters. These classifications are validat-
ed by testing the reproducibility of these classes [26, 32••],
sensitivity analyses [26] and the analysis of their association
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with objective measurements considered to be relevant to
asthma such as lung function (e.g. forced expiratory volume
in 1 s [FEV1]), and bronchial hyperresponsiveness (BHR)
[31] using regression analyses [28•, 32••, 36, 45•, 48] and
true- and false-positive rates from receiver operating charac-
teristic curves [42••, 49].

Strengths and Limitations of Different LCA
Approaches

A major advantage of LCA is that subjects are not absolutely
assigned to a single class, but instead have probabilities of
membership to various classes. Also, as the model selection
criteria previously described assist in determining the optimal
number of classes, LCA can be regarded as fairly objective in
the sub-group sets identification [19, 50]. However, a degree
of subjectivity is introduced into LCA as some a priori deci-
sions need to bemade, such as which variables will be included
in the model, with the assumptions on the data values distribu-
tions, and on the class shapes [19].

LCA is particularly suitable for categorical input variables
and can accommodate missing values when they are assumed
to be missing at random [51], thus allowing the analysis of a
whole sample. However, caution is required when using re-
cords containing missing values, as their use can pose a high
risk of bias where missing values are correlated with clinical
attributes. For example, in some studies, allergy tests are rare-
ly performed in non-asthmatic children, and a lack of infor-
mation about family history, environmental exposures and
clinical features can also contribute to bias. There is also the
risk of unrecorded episodes (e.g. of wheeze), which can lead
to an underestimation of incidence rates, possibly resulting in
imprecise class definitions [34]. Manifestation of biases such
as these could result in misclassification of subjects.

Another LCA approach, longitudinal latent class analysis
(LLCA) can temper these biases as it accounts for correlation
between reports at different time points [30••, 51, 52]. This is
possible because LLCA clusters individuals into classes along-
side others that share similar longitudinal response patterns
across discrete time points. Subjects with sporadic or incom-
plete reports are assigned to classes with less certainty that those
with consistent reports across time or those who report patterns
consistent with other subjects. However, LLCA sometimes re-
quires responses to be collected at the same discrete time point
in each subject. This has major implications for data collection.
Ideally, every subject should be exactly the same age when each
measurement is performed. However, in most epidemiological
longitudinal studies, most measurements are not collected in
this fashion, so the rounding of age is required, introducing
measurement errors [33•]. Also, LLCA also does not allow
the modelling of the effect of time-varying causative factors

(such as environmental exposures, e.g. seasons) on the preva-
lence of a response such as wheeze.

These limitations can be overcome by using another, more
flexible form of LCA, latent class growth analysis (LCGA)
[41, 53]. Here, the variables need not be categorical, but can
be continuous, removing the need to round ages or other nu-
merical measurements. This allows trajectories of develop-
ment (e.g. of wheeze or atopic sensitization) to be estimated
as a continuous function of age. The effect of time-varying
causative factors can now be included as well (for example the
effect of common cold/flu season on the prevalence of wheez-
ing) [30••]. This relatively novel method enables the investi-
gation of associations between time-varying and time-
invariant factors on response patterns and makes it easier to
compare classes across different populations and to account
for a variable number of repeated assessments. All of this can
be particularly advantageous when studying the effects of re-
peated environmental exposures and their outcomes that fluc-
tuate over time through childhood.

Software Implementations

LCA methods are implemented and are available in many
statistical and machine learning tools such as—from the liter-
ature here reviewed—Mplus (Los Angeles, CA, USA) [28•,
35, 42••, 48, 54, 55], Latent GOLD (Statistical Innovations,
Boston, USA) [31, 34, 56], R (http://www.r-project.org/),
including its package poLCA (Emory University, Atlanta,
GA, USA) [26, 57], Infer.NET (Microsoft, Cambridge,
USA) [25•, 58], STATA (StataCorp, College Station, TX,
USA) [32••, 40, 59, 60], SAS Statistical Software (SAS
Institute, Cary, NC, USA) [61], including the PROC LCA
[20, 27, 30••, 51, 52] and TRAJ procedures [30••, 61, 62],
and Multimix (University of Waikato, Hamilton, New
Zealand) [33•, 63].

Cohort Details and Phenotype Associations

Cohorts that have utilized data-driven approaches to analysis
in the field of asthma and allergy within the last 5 years are
listed in Table 1. They are a mixture of longitudinal and cross-
sectional studies, with the 19 out of the 25 being birth cohorts
(see Table 1). Sample sizes used in different analyses range
from 201 to 11,632 participants. Variants of LCA performed
upon these study populations include LLCA, LCGA and la-
tent growth mixture modelling (LGMM) [54]. The number of
resulting classes for each of these studies ranged from 3 to 8,
with the patients allocated to each class based on characteris-
tics such as wheezing [21, 26, 30••, 31, 32••, 33•, 34, 36, 42••,
45•, 64, 65, 66••], atopic status [20, 23, 25•, 26, 28•, 35, 36,
66••] and coughing [31, 33•]. Studies that based their subtypes
upon other characteristics included that of Figueiredo et al.
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[48], who based theirs upon cytokine production, denoting a
burden of infection; Bochenek et al. [27] who based theirs upon
sub-phenotypes of a recognized sub-type of asthma—aspirin-
exacerbated respiratory disease; Rzehak et al. [54] who based
theirs upon body mass index trajectories; and Belgrave et al.
[66••] who included eczema, wheeze and rhinitis.

The resulting sub-groups (classes) were then often associ-
ated with clinical features such as atopy, physician-diagnosed
asthma and fractional exhaled nitric oxide (FeNO) [20, 23,
25•, 26, 28•, 32••, 36, 67, 68]. For example, FeNO—a surro-
gate biomarker of the degree of eosinophilic airway inflam-
mation [69, 70]—measured at age 8 years in the prevention
and incidence of asthma and mite allergy (PIAMA) cohort,
was found to be different amongst wheezing phenotypes, but
only in atopic children, fuelling speculation that the patho-
physiology of wheezing phenotypes differs between atopic
and non-atopic children, and that they are the result of differ-
ing endotypes [67].

Wheezing is the feature that the analyses reviewed here
most commonly used to derive classes (which are often re-
ferred to as ‘wheeze phenotypes’), some (but not all) of which
are similar across different studies and analyses. Types of
wheeze phenotypes that have been identified across the stud-
ies include early life wheeze (transient and prolonged), late-
onset wheeze and persistent wheeze (controlled and trouble-
some) [7]. For the early life wheeze phenotypes, a prolonged
early wheeze (PEW) was identified in the Avon Longitudinal
Study of Parents and Children (ALSPAC) study [21], but it
was not found in the PIAMA cohort in the same analysis.
However, the latter cohort’s transient early wheeze (TEW)—
also identified in the ALSPAC cohort—appeared to be a com-
bination of ALSPAC’s PEW and TEW classes, both in terms
of size and of the prevalence of wheeze over time. Children in
these classes were found to have diminished lung function at
age 6–8 years (i.e. after the wheeze had resolved) compared to
those who had never wheezed in both cohorts [21]. These
phenotypes of early childhood wheezing were not associated
with allergic sensitization, eczema or rhinitis, and it has since
been confirmed that the developmental profiles of eczema,
wheeze and rhinitis are indeed heterogeneous [66••].

The late-onset wheeze phenotype is generally characterized
as wheeze which starts after the age of 3 years which then
persists into later childhood. Studies have mixed reports with
respect to the association of late-onset wheeze with secondary
asthma phenotypes such as lung function and bronchial
hyperresponsiveness [7]. For example, ALSPAC, PIAMA
and MAAS all found that children in this subgroup are signif-
icantly more likely to have bronchial hyperresponsiveness [3,
21, 32••], but only MAAS and ALSPAC found significant
associations of late-onset wheeze with lung function impair-
ment at the age of 6 years [3, 71].

Lastly, the persistent wheeze phenotypes have been char-
acterized by diminished lung function by school age in all

cohorts which assessed their association [7]. In contrast to
other studies which described a single persistent wheeze class,
in the MAAS birth cohort, the children with persistent wheeze
fell into two distinct classes: persistent controlled wheeze
(PCW) and persistent troublesome wheeze (PTW) [32••].
The PTW group had worse lung function and more reactive
airways than all other groups, including PCW [32••]. Howev-
er, it is worth noting that this analysis utilized information on
wheezing derived from two different sources—parentally re-
ported and physician-confirmed—likely enabling a more pre-
cise allocation into sub-groups.

Most studies reported a strong association between persis-
tent wheezing and atopy, with more than 50 % of persistent
wheezers having been found to be atopic [72]. However, ato-
py is not a feature that is unique to this class, and it is also
present in other wheeze classes, and amongst children who
have never wheezed. Thus, on its own atopic status is not a
good discriminator of wheeze class. Several studies hypothe-
sized that similar to wheezing illness, atopy may also com-
prise of several distinct subtypes. For example, Herr et al.
identified three distinct atopic phenotypes regarding atopy
within the first 18 months of life amongst participants in the
PARIS cohort [26]. In the analysis spanning the first 8 years of
life, Simpson et al. have identified different structure within
the MAAS data, with the optimal model containing five clas-
ses (early sensitization to multiple allergen sources, late sen-
sitization to multiple allergen sources, mite, non-dust mite and
no latent vulnerability) [23]. The atopic class of early sensiti-
zation to multiple allergen sources was associated with persis-
tent wheeze phenotypes and was very strongly associated with
physician-diagnosed asthma in the school age (odds ratio ∼30)
[23]. Lazic et al. extended this work by including newly avail-
able skin test and IgE data from age 11 years from the MAAS
cohort and that of the Isle of Wight cohort [25•, 73–76]. Very
similar five-class models emerged across the two cohorts,
suggesting that these atopy classes were stable across time
and different populations. In both cohorts, children in the class
with sensitivity to a wide variety of allergens were consider-
ably more likely to have asthma compared to all other classes
[25•]. The children in this class (comprising approximately
one quarter of children defined as atopic using the standard
definition) across both cohorts had significantly poorer lung
function, most reactive airways, highest eNO and most hospi-
tal admissions for asthma. Of note, the associations between
asthma presence and severity and conventionally defined ato-
py were much weaker. These results indicate that there is a
latent heterogeneity in atopy, similar to that found in asthma/
wheezing illness [23, 25•]. Because of this, attempting to de-
fine atopy as a dichotomous trait could well be an oversimpli-
fication, much as it would be to define childhood wheezing in
such a fashion.

Further research will be necessary in order to replicate dif-
ferent asthma, wheeze and atopy subtypes across independent
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cohorts, to assess their stability over time and to confirm the
existence of distinct pathophysiological mechanisms under-
pinning each sub-type. Since unique pathophysiological
mechanisms for the subtypes of wheezing illness and atopy
identified so far using machine learning approaches have not
as yet been elucidated, these cannot be considered as ‘true
endotypes’ but are mostly hypothetical constructs to facilitate
further research in this area. The identification of underlying
biology and real endotypes may have major implications for
effective and precise asthma prevention, treatment and man-
agement strategies, as it is anticipated that the different groups
may respond differently to the treatments currently offered.

Conclusions

A distinct set of heterogeneous diseases with the diagnostic
label of asthma may potentially be identified using data-driv-
en, computational techniques such as latent class analysis.
Such techniques disambiguate the complex patterns of symp-
toms shared by these different diseases. This may be a first
step towards elucidation and better understanding of their dis-
tinct underlying pathophysiological mechanisms, which could
facilitate the development of personalized mechanism-
specific prevention strategies and more effective stratified
therapies.
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