323 research outputs found
PSpectRe: A Pseudo-Spectral Code for (P)reheating
PSpectRe is a C++ program that uses Fourier-space pseudo-spectral methods to
evolve interacting scalar fields in an expanding universe. PSpectRe is
optimized for the analysis of parametric resonance in the post-inflationary
universe, and provides an alternative to finite differencing codes, such as
Defrost and LatticeEasy. PSpectRe has both second- (Velocity-Verlet) and
fourth-order (Runge-Kutta) time integrators. Given the same number of spatial
points and/or momentum modes, PSpectRe is not significantly slower than finite
differencing codes, despite the need for multiple Fourier transforms at each
timestep, and exhibits excellent energy conservation. Further, by computing the
post-resonance equation of state, we show that in some circumstances PSpectRe
obtains reliable results while using substantially fewer points than a finite
differencing code. PSpectRe is designed to be easily extended to other problems
in early-universe cosmology, including the generation of gravitational waves
during phase transitions and pre-inflationary bubble collisions. Specific
applications of this code will be pursued in future work.Comment: 22 pages; source code for PSpectRe available:
http://easther.physics.yale.edu v2 Typos fixed, minor improvements to
wording; v3 updated as per referee comment
Popular matchings in the marriage and roommates problems
Popular matchings have recently been a subject of study in the context of the so-called House Allocation Problem, where the objective is to match applicants to houses over which the applicants have preferences. A matching M is called popular if there is no other matching M′ with the property that more applicants prefer their allocation in M′ to their allocation in M. In this paper we study popular matchings in the context of the Roommates Problem, including its special (bipartite) case, the Marriage Problem. We investigate the relationship between popularity and stability, and describe efficient algorithms to test a matching for popularity in these settings. We also show that, when ties are permitted in the preferences, it is NP-hard to determine whether a popular matching exists in both the Roommates and Marriage cases
Effect of the Surface on the Electron Quantum Size Levels and Electron g-Factor in Spherical Semiconductor Nanocrystals
The structure of the electron quantum size levels in spherical nanocrystals
is studied in the framework of an eight--band effective mass model at zero and
weak magnetic fields. The effect of the nanocrystal surface is modeled through
the boundary condition imposed on the envelope wave function at the surface. We
show that the spin--orbit splitting of the valence band leads to the
surface--induced spin--orbit splitting of the excited conduction band states
and to the additional surface--induced magnetic moment for electrons in bare
nanocrystals. This additional magnetic moment manifests itself in a nonzero
surface contribution to the linear Zeeman splitting of all quantum size energy
levels including the ground 1S electron state. The fitting of the size
dependence of the ground state electron g factor in CdSe nanocrystals has
allowed us to determine the appropriate surface parameter of the boundary
conditions. The structure of the excited electron states is considered in the
limits of weak and strong magnetic fields.Comment: 11 pages, 4 figures, submitted to Phys. Rev.
MHSP in reversed-biased operation mode for ion blocking in gas-avalanche multipliers
We present recent results on the operation of gas-avalanche detectors
comprising a cascade of gas electron multipliers (GEMs) and Micro-Hole and
Strip Plates (MHSPs) multiplier operated in reversed-bias (R-MHSP) mode. The
operation mechanism of the R-MHSP is explained and its potential contribution
to ion-backflow (IBF) reduction is demonstrated. IBF values of 4E-3 were
obtained in cascaded R-MHSP and GEM multipliers at gains of about 1E+4, though
at the expense of reduced effective gain in the first R- MHSP multiplier in the
cascade.Comment: 23 pages, 8 figure
Theory of nuclear induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots
We propose a model for spectral diffusion of localized spins in
semiconductors due to the dipolar fluctuations of lattice nuclear spins. Each
nuclear spin flip-flop is assumed to be independent, the rate for this process
being calculated by a method of moments. Our calculated spin decoherence time
ms for donor electron spins in Si:P is a factor of two longer than
spin echo decay measurements. For P nuclear spins we show that spectral
diffusion is well into the motional narrowing regime. The calculation for GaAs
quantum dots gives s depending on the quantum dot size. Our
theory indicates that nuclear induced spectral diffusion should not be a
serious problem in developing spin-based semiconductor quantum computer
architectures.Comment: 15 pages, 9 figures. Accepted for publication in Phys. Rev.
FIESTA 2: parallelizeable multiloop numerical calculations
The program FIESTA has been completely rewritten. Now it can be used not only
as a tool to evaluate Feynman integrals numerically, but also to expand Feynman
integrals automatically in limits of momenta and masses with the use of sector
decompositions and Mellin-Barnes representations. Other important improvements
to the code are complete parallelization (even to multiple computers),
high-precision arithmetics (allowing to calculate integrals which were undoable
before), new integrators and Speer sectors as a strategy, the possibility to
evaluate more general parametric integrals.Comment: 31 pages, 5 figure
Electron spin as a spectrometer of nuclear spin noise and other fluctuations
This chapter describes the relationship between low frequency noise and
coherence decay of localized spins in semiconductors. Section 2 establishes a
direct relationship between an arbitrary noise spectral function and spin
coherence as measured by a number of pulse spin resonance sequences. Section 3
describes the electron-nuclear spin Hamiltonian, including isotropic and
anisotropic hyperfine interactions, inter-nuclear dipolar interactions, and the
effective Hamiltonian for nuclear-nuclear coupling mediated by the electron
spin hyperfine interaction. Section 4 describes a microscopic calculation of
the nuclear spin noise spectrum arising due to nuclear spin dipolar flip-flops
with quasiparticle broadening included. Section 5 compares our explicit
numerical results to electron spin echo decay experiments for phosphorus doped
silicon in natural and nuclear spin enriched samples.Comment: Book chapter in "Electron spin resonance and related phenomena in low
dimensional structures", edited by Marco Fanciulli. To be published by
Springer-Verlag in the TAP series. 35 pages, 9 figure
Radiation-induced oscillatory magnetoresistance as a sensitive probe of the zero-field spin splitting in high mobility GaAs/AlGaAs devices
We suggest an approach for characterizing the zero-field spin splitting of
high mobility two-dimensional electron systems, when beats are not readily
observable in the Shubnikov-de Haas effect. The zero-field spin splitting and
the effective magnetic field seen in the reference frame of the electron is
evaluated from a quantitative study of beats observed in radiation-induced
magnetoresistance oscillations.Comment: 4 pages, 4 color figure
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector
Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations
- …
