PSpectRe is a C++ program that uses Fourier-space pseudo-spectral methods to
evolve interacting scalar fields in an expanding universe. PSpectRe is
optimized for the analysis of parametric resonance in the post-inflationary
universe, and provides an alternative to finite differencing codes, such as
Defrost and LatticeEasy. PSpectRe has both second- (Velocity-Verlet) and
fourth-order (Runge-Kutta) time integrators. Given the same number of spatial
points and/or momentum modes, PSpectRe is not significantly slower than finite
differencing codes, despite the need for multiple Fourier transforms at each
timestep, and exhibits excellent energy conservation. Further, by computing the
post-resonance equation of state, we show that in some circumstances PSpectRe
obtains reliable results while using substantially fewer points than a finite
differencing code. PSpectRe is designed to be easily extended to other problems
in early-universe cosmology, including the generation of gravitational waves
during phase transitions and pre-inflationary bubble collisions. Specific
applications of this code will be pursued in future work.Comment: 22 pages; source code for PSpectRe available:
http://easther.physics.yale.edu v2 Typos fixed, minor improvements to
wording; v3 updated as per referee comment