10 research outputs found

    Comparison between simulated and observed LHC beam backgrounds in the ATLAS experiment at Ebeam =4 TeV

    Get PDF
    Results of dedicated Monte Carlo simulations of beam-induced background (BIB) in the ATLAS experiment at the Large Hadron Collider (LHC) are presented and compared with data recorded in 2012. During normal physics operation this background arises mainly from scattering of the 4 TeV protons on residual gas in the beam pipe. Methods of reconstructing the BIB signals in the ATLAS detector, developed and implemented in the simulation chain based on the \textscFluka Monte Carlo simulation package, are described. The interaction rates are determined from the residual gas pressure distribution in the LHC ring in order to set an absolute scale on the predicted rates of BIB so that they can be compared quantitatively with data. Through these comparisons the origins of the BIB leading to different observables in the ATLAS detectors are analysed. The level of agreement between simulation results and BIB measurements by ATLAS in 2012 demonstrates that a good understanding of the origin of BIB has been reached

    Search for long-lived neutral particles in pp collisions at s√=13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

    Get PDF
    This paper describes a search for pairs of neutral, long-lived particles decaying in the ATLAS calorimeter. Long-lived particles occur in many extensions to the Standard Model and may elude searches for new promptly decaying particles. The analysis considers neutral, long-lived scalars with masses between 5 and 400 GeV, produced from decays of heavy bosons with masses between 125 and 1000 GeV, where the long-lived scalars decay into Standard Model fermions. The analysis uses either 10.8 fb−1 or 33.0 fb−1 of data (depending on the trigger) recorded in 2016 at the LHC with the ATLAS detector in proton–proton collisions at a centre-of-mass energy of 13 TeV. No significant excess is observed, and limits are reported on the production cross section times branching ratio as a function of the proper decay length of the long-lived particles

    Evidence for the production of three massive vector bosons with the ATLAS detector

    Get PDF
    A search for the production of three massive vector bosons in proton-proton collisions is performed using data at s=13\sqrt{s} = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider in the years 2015-2017, corresponding to an integrated luminosity of 79.879.8 fb1^{-1}. Events with two same-sign leptons \ell (electrons or muons) and at least two reconstructed jets are selected to search for WWWννqqWWW \to \ell \nu \ell \nu qq. Events with three leptons without any same-flavour opposite-sign lepton pairs are used to search for WWWνννWWW \to \ell \nu \ell\nu \ell \nu, while events with three leptons and at least one same-flavour opposite-sign lepton pair and one or more reconstructed jets are used to search for WWZνqqWWZ \to \ell \nu qq \ell \ell. Finally, events with four leptons are analysed to search for WWZννWWZ \to \ell \nu \ell \nu \ell \ell and WZZqqWZZ \to qq \ell \ell \ell \ell. Evidence for the joint production of three massive vector bosons is observed with a significance of 4.1 standard deviations, where the expectation is 3.1 standard deviations.Comment: 38 pages in total, author list starting page 22, 6 figures, 5 tables, matching published paper in Phys. Lett. B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-2

    Measurement of prompt photon production in sNN=8.16 TeV p + Pb collisions with ATLAS

    Get PDF
    The inclusive production rates of isolated, prompt photons in p+Pb collisions at s=8.16 TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb recorded in 2016. The cross-section and nuclear modification factor R are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon-nucleon centre-of-mass pseudorapidity regions, (−2.83,−2.02), (−1.84,0.91), and (1.09,1.90). The cross-section and R values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei

    Search for invisible Higgs boson decays in vector boson fusion at root s=13 TeV with the ATLAS detector

    Get PDF
    We report a search for Higgs bosons that are produced via vector boson fusion and subsequently decay into invisible particles. The experimental signature is an energetic jet pair with invariant mass of O(1)TeV and O(100)GeV missing transverse momentum. The analysis uses 36.1 fb −1 of pp collision data at s=13TeV recorded by the ATLAS detector at the LHC. In the signal region the 2252 observed events are consistent with the background estimation. Assuming a 125GeV scalar particle with Standard Model cross sections, the upper limit on the branching fraction of the Higgs boson decay into invisible particles is 0.37 at 95% confidence level where 0.28 was expected. This limit is interpreted in Higgs portal models to set bounds on the WIMP–nucleon scattering cross section. We also consider invisible decays of additional scalar bosons with masses up to 3TeV for which the upper limits on the cross section times branching fraction are in the range of 0.3–1.7pb

    Search for invisible Higgs boson decays in vector boson fusion at root s=13 TeV with the ATLAS detector

    Get PDF
    We report a search for Higgs bosons that are produced via vector boson fusion and subsequently decay into invisible particles. The experimental signature is an energetic jet pair with invariant mass of O(1) TeV and O(100) GeV missing transverse momentum. The analysis uses 36.1 fb−1 of pp collision data at √s=13 TeV recorded by the ATLAS detector at the LHC. In the signal region the 2252 observed events are consistent with the background estimation. Assuming a 125 GeV scalar particle with Standard Model cross sections, the upper limit on the branching fraction of the Higgs boson decay into invisible particles is 0.37 at 95% confidence level where 0.28 was expected. This limit is interpreted in Higgs portal models to set bounds on the wimp–nucleon scattering cross section. We also consider invisible decays of additional scalar bosons with masses up to 3 TeV for which the upper limits on the cross section times branching fraction are in the range of 0.3–1.7 pb

    Search for high-mass dilepton resonances using 139 fb−1 of pp collision data collected at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for high-mass dielectron and dimuon resonances in the mass range of 250 GeV to 6 TeV is presented. The data were recorded by the ATLAS experiment in proton–proton collisions at a centre-of-mass energy of √s=13 TeV during Run 2 of the Large Hadron Collider and correspond to an integrated luminosity of 139 fb−1. A functional form is fitted to the dilepton invariant-mass distribution to model the contribution from background processes, and a generic signal shape is used to determine the significance of observed deviations from this background estimate. No significant deviation is observed and upper limits are placed at the 95% confidence level on the fiducial cross-section times branching ratio for various resonance width hypotheses. The derived limits are shown to be applicable to spin-0, spin-1 and spin-2 signal hypotheses. For a set of benchmark models, the limits are converted into lower limits on the resonance mass and reach 4.5 TeV for the E6-motivated Z'ψ boson. Also presented are limits on Heavy Vector Triplet model couplings

    Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in pp collisions with the ATLAS detector at root s=13 TeV

    Get PDF
    WOS: 000494939000013A search for a right-handed gauge boson W-R, decaying into a boosted right-handed heavy neutrino N-R, in the framework of Left-Right Symmetric Models is presented. It is based on data from proton-proton collisions with a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider during the years 2015, 2016 and 2017, corresponding to an integrated luminosity of 80 fb(-1). The search is performed separately for electrons and muons in the final state. A distinguishing feature of the search is the use of large-radius jets containing electrons. Selections based on the signal topology result in smaller background compared to the expected signal. No significant deviation from the Standard Model prediction is observed and lower limits are set in the W-R and N-R mass plane. Mass values of the W-R smaller than 3.8-5 TeV are excluded for N-R in the mass range 0.1-1.8 TeV. (C) 2019 The Author. Published by Elsevier B.V.ANPCyT, ArgentinaANPCyT; YerPhI, Armenia; ARC, AustraliaAustralian Research Council; BMWFW, Austria; FWF, AustriaAustrian Science Fund (FWF); ANAS, AzerbaijanAzerbaijan National Academy of Sciences (ANAS); SSTC, Belarus; CNPq, BrazilNational Council for Scientific and Technological Development (CNPq); FAPESP, BrazilFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); NSERC, CanadaNatural Sciences and Engineering Research Council of Canada; NRC, Canada; CFI, CanadaCanada Foundation for Innovation; CERN; CONICYT, ChileComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); CAS, ChinaChinese Academy of Sciences; MOST, ChinaMinistry of Science and Technology, China; NSFC, ChinaNational Natural Science Foundation of China; COLCIENCIAS, ColombiaDepartamento Administrativo de Ciencia, Tecnologia e Innovacion Colciencias; MSMT CR, Czech RepublicMinistry of Education, Youth & Sports - Czech RepublicCzech Republic Government; MPO CR, Czech RepublicCzech Republic Government; VSC CR, Czech RepublicCzech Republic Government; DNRF, Denmark; DNSRC, DenmarkDanish Natural Science Research Council; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, GermanyFederal Ministry of Education & Research (BMBF); HGF, Germany; MPG, GermanyMax Planck Society; GSRT, GreeceGreek Ministry of Development-GSRT; RGC, Hong Kong SAR, ChinaHong Kong Research Grants Council; ISF, IsraelIsrael Science Foundation; Benoziyo Center, Israel; INFN, ItalyIstituto Nazionale di Fisica Nucleare; MEXT, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); JSPS, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science; CNRST, Morocco; NWO, NetherlandsNetherlands Organization for Scientific Research (NWO)Netherlands Government; RCN, Norway; MNiSW, PolandMinistry of Science and Higher Education, Poland; NCN, Poland; FCT, PortugalPortuguese Foundation for Science and Technology; MNE/IFA, Romania; MES of Russia, Russian FederationRussian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, SloveniaSlovenian Research Agency - Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, SwitzerlandSwiss National Science Foundation (SNSF); Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, TaiwanMinistry of Science and Technology, Taiwan; TAEK, TurkeyMinistry of Energy & Natural Resources - Turkey; STFC, United KingdomScience & Technology Facilities Council (STFC); DOE, United States of AmericaUnited States Department of Energy (DOE); NSF, United States of AmericaNational Science Foundation (NSF); BCKDF, Canada; Canarie, Canada; CRC, Canada; Compute Canada, Canada; COST, European Union; ERC, European UnionEuropean Union (EU)European Research Council (ERC); ERDF, European UnionEuropean Union (EU); Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European UnionEuropean Union (EU); Investissements d' Avenir Labex and Idex, ANR, FranceFrench National Research Agency (ANR); DFG, GermanyGerman Research Foundation (DFG); AvH Foundation, GermanyAlexander von Humboldt Foundation; EU-ESF, Greece; Greek NSRF, Greece; BSFNSF, Israel; GIF, IsraelGerman-Israeli Foundation for Scientific Research and Development; CERCA Programme Generalitat de Catalunya, Spain; Royal Society, United KingdomRoyal Society of London; Leverhulme Trust, United KingdomLeverhulme Trust; Herakleitos programme; Thales programme; Aristeia programmeWe thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.r We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, Canarie, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Sklodowska-Curie Actions, European Union; Investissements d' Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSFNSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom.r The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref.[80]
    corecore