96 research outputs found

    Chromosome assignment of two cloned DNA probes hybridizing predominantly to human sex chromosomes

    Get PDF
    In situ hybridization experiments were carried out with two clones, YACG 35 and 2.8, which had been selected from two genomic libraries strongly enriched for the human Y chromosome. Besides the human Y chromosome, both sequences strongly hybridized to the human X chromosome, with few minor binding sites on autosomes. In particular, on the X chromosome DNA from clone YACG 35 hybridized to the centromeric region and the distal part of the short arm (Xp2.2). On the Y chromosome, the sequence was assigned to one site situated in the border region between Yq1.1 and Yq1.2. DNA from clone 2.8 also hybridized to the centromeric region of the X and the distal part of the short arm (Xq2.2). On the Y, however, two binding sites were observed (Yp1.1 and Yq1.2). The findings indicate that sex chromosomal sequences may be localized in homologous regions (as suggested from meiotic pairing) but also at ectopic sites

    High-Resolution 3D Structure Determination of Kaliotoxin by Solid-State NMR Spectroscopy

    Get PDF
    High-resolution solid-state NMR spectroscopy can provide structural information of proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy. Here we demonstrate that it is possible to determine a protein structure by solid-state NMR to a resolution comparable to that by solution NMR. Using an iterative assignment and structure calculation protocol, a large number of distance restraints was extracted from 1H/1H mixing experiments recorded on a single uniformly labeled sample under magic angle spinning conditions. The calculated structure has a coordinate precision of 0.6 Å and 1.3 Å for the backbone and side chain heavy atoms, respectively, and deviates from the structure observed in solution. The approach is expected to be applicable to larger systems enabling the determination of high-resolution structures of amyloid or membrane proteins

    Correlating corneal arcus with atherosclerosis in familial hypercholesterolemia

    Get PDF
    Abstract Background A relationship between corneal arcus and atherosclerosis has long been suspected but is controversial. The homozygous familial hypercholesterolemia patients in this study present a unique opportunity to assess this issue. They have both advanced atherosclerosis and corneal arcus. Methods This is a cross-sectional study of 17 patients homozygous for familial hypercholesterolemia presenting to the Clinical Center of the National Institutes of Health. Plasma lipoproteins, circumferential extent of arcus, thoracic aorta and coronary calcific atherosclerosis score, and Achilles tendon width were measured at the National Institutes of Health. Results Patients with corneal arcus had higher scores for calcific atherosclerosis (mean 2865 compared to 412), cholesterol-year score (mean 11830 mg-yr/dl compared to 5707 mg-yr/dl), and Achilles tendon width (mean 2.54 cm compared to 1.41 cm) than those without. Corneal arcus and Achilles tendon width were strongly correlated and predictive of each other. Although corneal arcus was correlated with calcific atherosclerosis (r = 0.67; p = 0.004), it was not as highly correlated as was the Achilles tendon width (r = 0.855; p Conclusion Corneal arcus reflects widespread tissue lipid deposition and is correlated with both calcific atherosclerosis and xanthomatosis in these patients. Patients with more severe arcus tend to have more severe calcific atherosclerosis. Corneal arcus is not as good an indicator of calcific atherosclerosis as Achilles tendon thickness, but its presence suggests increased atherosclerosis in these hypercholesterolemic patients.</p

    Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Roseobacter litoralis </it>OCh149, the type species of the genus, and <it>Roseobacter denitrificans </it>OCh114 were the first described organisms of the <it>Roseobacter </it>clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis.</p> <p>Results</p> <p>The genome of <it>R. litoralis </it>OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for <it>R. litoralis</it>, 1122 (24.7%) are not present in the genome of <it>R. denitrificans</it>. Many of the unique genes of <it>R. litoralis </it>are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of <it>R. denitrificans</it>. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of <it>R. litoralis</it>. In contrast to <it>R. denitrificans</it>, the photosynthesis genes of <it>R. litoralis </it>are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the <it>Roseobacter </it>clade revealed several genomic regions that were only conserved in the two <it>Roseobacter </it>species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in <it>R. litoralis </it>differed from the phenotype.</p> <p>Conclusions</p> <p>The genomic differences between the two <it>Roseobacter </it>species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of <it>R. denitrifcans </it>(pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of <it>R. litoralis </it>is probably regulated by nutrient availability.</p

    Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Get PDF
    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore