451 research outputs found

    In vitro mycorrhization of micropropagated plants: studies on Castanea sativa Mill.

    Get PDF
    In vitro mycorrhization can be made by several axenic and nonaxenic techniques but criticism exists about their artificiality and inability to reproduce under natural conditions. However, artificial mycorrhization under controlled conditions can provide important information about the physiology of symbiosis. Micropropagated Castanea sativa plants were inoculated with the mycorrhizal fungus Pisolithus tinctorius after in vitro rooting. The mycorrhizal process was monitored at regular intervals in order to evaluate the mantle and hartig net formation, and the growth rates of mycorrhizal and nonmycorrhizal plants. Plant roots show fungal hyphae adhesion at the surface after 24 hours of mycorrhizal induction. After 20 days a mantle can be observed and a hartig net is forming although the morphology of the epidermal cells remains unaltered. At 30 days of root–fungus contact the hartig net is well developed and the epidermal cells are already enlarged. After 50 days of mycorrhizal induction, growth was higher for mycorrhizal plants than for nonmycorrhizal ones. The length of the major roots was lower in mycorrhizal plants after 40 days. Fresh and dry weights were higher in mycorrhizal plants after 30 days. The growth rates of chestnut mycorrhizal plants are in agreement with the morphological development of the mycorrhizal structures observed at each mycorrhizal time. The assessment of symbiotic establishment takes into account the formation of a mantle and a hartig net that were already developed at 30 days, when differences between fresh and dry weights of mycorrhizal and nonmycorrhizal plants can be quantified. In vitro conditions, mycorrhization influences plant physiology after 20 days of root–fungus contact, namely in terms of growth rates. Fresh and dry weights, heights, stem diameter and growth rates increased while major root growth rate decreased in mycorrhizal plants.Springe

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Anatomy of the sign-problem in heavy-dense QCD

    Get PDF
    QCD at finite densities of heavy quarks is investigated using the density-of-states method. The phase factor expectation value of the quark determinant is calculated to unprecedented precision as a function of the chemical potential. Results are validated using those from a reweighting approach where the latter can produce a significant signalto-noise ratio. We confirm the particle–hole symmetry at low temperatures, find a strong sign problem at intermediate values of the chemical potential, and an inverse Silver Blaze feature for chemical potentials close to the onset value: here, the phase-quenched theory underestimates the density of the full theory

    Threshold intensity factors as lower boundaries for crack propagation in ceramics

    Get PDF
    BACKGROUND: Slow crack growth can be described in a v (crack velocity) versus K(I )(stress intensity factor) diagram. Slow crack growth in ceramics is attributed to corrosion assisted stress at the crack tip or at any pre-existing defect in the ceramic. The combined effect of high stresses at the crack tip and the presence of water or body fluid molecules (reducing surface energy at the crack tip) induces crack propagation, which eventually may result in fatigue. The presence of a threshold in the stress intensity factor, below which no crack propagation occurs, has been the subject of important research in the last years. The higher this threshold, the higher the reliability of the ceramic, and consequently the longer its lifetime. METHODS: We utilize the Irwin K-field displacement relation to deduce crack tip stress intensity factors from the near crack tip profile. Cracks are initiated by indentation impressions. The threshold stress intensity factor is determined as the time limit of the tip stress intensity when the residual stresses have (nearly) disappeared. RESULTS: We determined the threshold stress intensity factors for most of the all ceramic materials presently important for dental restorations in Europe. Of special significance is the finding that alumina ceramic has a threshold limit nearly identical with that of zirconia. CONCLUSION: The intention of the present paper is to stress the point that the threshold stress intensity factor represents a more intrinsic property for a given ceramic material than the widely used toughness (bend strength or fracture toughness), which refers only to fast crack growth. Considering two ceramics with identical threshold limits, although with different critical stress intensity limits, means that both ceramics have identical starting points for slow crack growth. Fast catastrophic crack growth leading to spontaneous fatigue, however, is different. This growth starts later in those ceramic materials that have larger critical stress intensity factors

    Computational cancer biology: education is a natural key to many locks

    Get PDF
    BACKGROUND: Oncology is a field that profits tremendously from the genomic data generated by high-throughput technologies, including next-generation sequencing. However, in order to exploit, integrate, visualize and interpret such high-dimensional data efficiently, non-trivial computational and statistical analysis methods are required that need to be developed in a problem-directed manner. DISCUSSION: For this reason, computational cancer biology aims to fill this gap. Unfortunately, computational cancer biology is not yet fully recognized as a coequal field in oncology, leading to a delay in its maturation and, as an immediate consequence, an under-exploration of high-throughput data for translational research. SUMMARY: Here we argue that this imbalance, favoring ’wet lab-based activities’, will be naturally rectified over time, if the next generation of scientists receives an academic education that provides a fair and competent introduction to computational biology and its manifold capabilities. Furthermore, we discuss a number of local educational provisions that can be implemented on university level to help in facilitating the process of harmonization

    A seesaw model for intermolecular gating in the kinesin motor protein

    Get PDF
    Recent structural observations of kinesin-1, the founding member of the kinesin group of motor proteins, have led to substantial gains in our understanding of this molecular machine. Kinesin-1, similar to many kinesin family members, assembles to form homodimers that use alternating ATPase cycles of the catalytic motor domains, or “heads”, to proceed unidirectionally along its partner filament (the microtubule) via a hand-over-hand mechanism. Cryo-electron microscopy has now revealed 8-Å resolution, 3D reconstructions of kinesin-1•microtubule complexes for all three of this motor’s principal nucleotide-state intermediates (ADP-bound, no-nucleotide, and ATP analog), the first time filament co-complexes of any cytoskeletal motor have been visualized at this level of detail. These reconstructions comprehensively describe nucleotide-dependent changes in a monomeric head domain at the secondary structure level, and this information has been combined with atomic-resolution crystallography data to synthesize an atomic-level "seesaw" mechanism describing how microtubules activate kinesin’s ATP-sensing machinery. The new structural information revises or replaces key details of earlier models of kinesin’s ATPase cycle that were based principally on crystal structures of free kinesin, and demonstrates that high-resolution characterization of the kinesin–microtubule complex is essential for understanding the structural basis of the cycle. I discuss the broader implications of the seesaw mechanism within the cycle of a fully functional kinesin dimer and show how the seesaw can account for two types of "gating" that keep the ATPase cycles of the two heads out of sync during processive movement
    corecore