171 research outputs found

    Measurements of integrated and differential cross sections for isolated photon pair production in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A measurement of the production cross section for two isolated photons in proton-proton collisions at a center-of-mass energy of √s=8 TeV is presented. The results are based on an integrated luminosity of 20.2 fb−1 recorded by the ATLAS detector at the Large Hadron Collider. The measurement considers photons with pseudorapidities satisfying |ηγ|40GeV and EγT,2>30 GeV for the two leading photons ordered in transverse energy produced in the interaction. The background due to hadronic jets and electrons is subtracted using data-driven techniques. The fiducial cross sections are corrected for detector effects and measured differentially as a function of six kinematic observables. The measured cross section integrated within the fiducial volume is 16.8 ± 0.8  pb . The data are compared to fixed-order QCD calculations at next-to-leading-order and next-to-next-to-leading-order accuracy as well as next-to-leading-order computations including resummation of initial-state gluon radiation at next-to-next-to-leading logarithm or matched to a parton shower, with relative uncertainties varying from 5% to 20%

    Charged-particle distributions at low transverse momentum in √s=13 13 TeV pp interactions measured with the ATLAS detector at the LHC

    Get PDF
    Measurements of distributions of charged particles produced in proton–proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 μb −1 μb−1 . The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators

    Measurements of normalized differential cross sections for tt̄ production in pp collisions at √(s)=7  TeV using the ATLAS detector

    Get PDF
    Measurements of normalized differential cross sections for top-quark pair production are presented as a function of the top-quark transverse momentum, and of the mass, transverse momentum, and rapidity of the t¯t system, in proton–proton collisions at a center-of-mass energy of √s=7  TeV. The data set corresponds to an integrated luminosity of 4.6  fb−1, recorded in 2011 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one lepton and at least four jets with at least one of the jets tagged as originating from a b-quark. The measured spectra are corrected for detector efficiency and resolution effects and are compared to several Monte Carlo simulations and theory calculations. The results are in fair agreement with the predictions in a wide kinematic range. Nevertheless, data distributions are softer than predicted for higher values of the mass of the t¯t system and of the top-quark transverse momentum. The measurements can also discriminate among different sets of parton distribution functions

    Addendum to ‘measurement of the tt̄ production cross-section using eμ events with b-tagged jets in pp collisions at √s= 7 and 8 TeV with the ATLAS detector’

    Get PDF
    The ATLAS measurement of the inclusive top quark pair (tt̄) cross-section σtt̄ in proton–proton collisions at √s=8 TeV has been updated using the final 2012 luminosity calibration. The updated cross-section result is: σtt¯=242.9±1.7±5.5±5.1±4.2pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, knowledge of the integrated luminosity and of the LHC beam energy. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. The measurement of the ratio of tt̄ cross-sections at √s=8 TeV and √s=7 TeV, and the √s=8 TeV fiducial measurement corresponding to the experimental acceptance of the leptons, have also been updated. The most precise measurement of the tt̄ cross-section (σtt̄) in proton–proton collisions at √s=8 TeV from the ATLAS Collaboration was made using events with an opposite-charge electron–muon pair and one or two b-tagged jets [1], and used a preliminary calibration of the integrated luminosity. The luminosity calibration has been finalised since [2] with a total uncertainty of 1.9%, corresponding to a substantial improvement on the previous uncertainty of 2.8%. Since the uncertainty on the integrated luminosity contributed 3.1% of the total 4.3% uncertainty on the σtt¯ measurement reported in [1], a significant improvement in the measurement is possible by using the new luminosity calibration, as documented in this Addendum. The new calibration corresponds to an integrated luminosity of 20.2 fb−¹ for the √s=8 TeV sample, a decrease of 0.2%. The cross-section was recomputed taking into account the effects on both the conversion of the tt¯ event yield to a cross-section, and the background estimates, giving a result of: σtt¯=242.9±1.7±5.5±5.1±4.2pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, knowledge of the integrated luminosity, and of the LHC beam energy, giving a total uncertainty of 8.8 pb (3.6 %). The result is consistent with the theoretical prediction of 252.9−14.5+13.3 pb, calculated at next-to-next-to-leading-order with next-to-next-to-leading-logarithmic soft gluon terms with the top++ 2.0 program [3] as discussed in detail in Ref. [1]. The updated value of the ratio of cross-sections Rtt¯=σtt¯(8 TeV)/σtt¯(7 TeV) is: Rtt¯=1.328±0.024±0.015±0.038±0.001, with uncertainties defined as above, adding in quadrature to a total of 0.047. The largest uncertainty comes from the uncertainties on the integrated luminosities, considered to be uncorrelated between the √s=7 TeV and √s=8 TeV datasets. This result is 2.1σ below the expectation of 1.430±0.013 calculated from top++ 2.0 as discussed in Ref. [1]. The updated fiducial cross-sections, for a tt¯ decay producing an eμ pair within a given fiducial region, are shown in Table 1, updating Table 5 of Ref. [1]. The results are given both for the analysis requirements of pT>25GeV and |η|30GeV and |η|<2.4. They are given separately for the two cases where events with either one or both leptons coming from t→W→τ→ℓ rather than the direct decay t→W→ℓ(ℓ=e or μ) are included, or where the contributions involving τ decays are subtracted. The results shown for the √s=7 TeV data sample are unchanged with respect to those in Ref. [1]. The results for the top quark pole mass and limits on light supersymmetric top squarks presented in Ref. [1] are derived from √s=7 TeV and √s=8 TeV cross-section measurements taken together, and would be only slightly improved by the luminosity update described here

    Search for high-mass dilepton resonances in pp collisions at s√=8  TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to dielectron or dimuon final states. Results are presented from an analysis of proton-proton (pp) collisions at a center-of-mass energy of 8 TeV corresponding to an integrated luminosity of 20.3  fb−1 in the dimuon channel. A narrow resonance with Standard Model Z couplings to fermions is excluded at 95% confidence level for masses less than 2.79 TeV in the dielectron channel, 2.53 TeV in the dimuon channel, and 2.90 TeV in the two channels combined. Limits on other model interpretations are also presented, including a grand-unification model based on the E6 gauge group, Z∗ bosons, minimal Z' models, a spin-2 graviton excitation from Randall-Sundrum models, quantum black holes, and a minimal walking technicolor model with a composite Higgs boson

    Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector

    Get PDF
    The final ATLAS Run 1 measurements of Higgs boson production and couplings in the decay channel H→ZZ∗→ℓ+ℓ−ℓ'+ℓ'−, where ℓ,ℓ′=e or μ, are presented. These measurements were performed using pp collision data corresponding to integrated luminosities of 4.5 and 20.3  fb−1 at center-of-mass energies of 7 and 8 TeV, respectively, recorded with the ATLAS detector at the LHC. The H→ZZ∗→4ℓ signal is observed with a significance of 8.1 standard deviations, with an expectation of 6.2 standard deviations, at mH=125.36  GeV, the combined ATLAS measurement of the Higgs boson mass from the H→γγ and H→ZZ∗→4ℓ channels. The production rate relative to the Standard Model expectation, the signal strength, is measured in four different production categories in the H→ZZ∗→4ℓ channel. The measured signal strength, at this mass, and with all categories combined, is 1.44+0.40−0.33. The signal strength for Higgs boson production in gluon fusion or in association with tt¯ or bb¯ pairs is found to be 1.7+0.5−0.4, while the signal strength for vector-boson fusion combined with WH/ZH associated production is found to be 0.3+1.6−0.9

    Measurement of the tt̄W and tt̄Z production cross sections in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    The production cross sections of top-quark pairs in association with massive vector bosons have been measured using data from pp collisions at s√ = 8 TeV. The dataset corresponds to an integrated luminosity of 20.3 fb−¹ collected by the ATLAS detector in 2012 at the LHC. Final states with two, three or four leptons are considered. A fit to the data considering the tt̄W and tt̄Z processes simultaneously yields a significance of 5.0σ (4.2σ) over the background-only hypothesis for tt¯Wtt¯W (tt̄Z) production. The measured cross sections are σtt̄W = 369 + 100−91 fb and σtt̄Z = 176 + 58−52 fb. The background-only hypothesis with neither tt̄W nor tt̄Z production is excluded at 7.1σ. All measurements are consistent with next-to-leading-order calculations for the tt̄W and tt̄Z processes

    Heart failure diagnosis in primary health care: clinical characteristics of problematic patients. A clinical judgement analysis study

    Get PDF
    BACKGROUND: Early detection of chronic heart failure has become increasingly important since the introduction of effective treatment. However, clinical diagnosis of heart failure is known to be difficult, especially in mild cases or early in the course of the disease. The purpose of this study is to analyse how patient characteristics contribute to difficulties in diagnosing systolic heart failure. METHODS: Design: A Clinical Judgement Analysis study of 40 case vignettes based on authentic patients, including relevant clinical data except echocardiography. Setting: Primary health care and two cardiology outpatient clinics in Stockholm. Subjects: 70 participants with different types of clinical experience; 27 specialists in general practice, 22 cardiologists, and 21 medical students. Main outcome measures: The assessed probability of heart failure for each case vignette, and the disagreement between the participants. The number of clinical variables (cues) indicative of heart failure in the case vignettes. RESULTS: The ten case vignettes with the least diverging assessments more often had increased relative cardiac volume and atrial fibrillation. No further specific clinical patterns could be found in subgroups of the case vignettes. The ten case vignettes with the most diverging assessments were those with an intermediate number of clinical variables. The case vignettes with the least diverging assessments more often represented patients with cardiac enlargement and atrial fibrillation. CONCLUSION: Diagnosing mild heart failure is difficult, as these patients are not easy to characterise. In our study, a larger number of positive cues resulted in more diagnostic conformity among the participants, and the most important information was cardiac enlargement. The importance of more objective diagnostic methods in diagnosing suspected cases of heart failure should be emphasised

    General practitioners' reasoning when considering the diagnosis heart failure: a think-aloud study

    Get PDF
    BACKGROUND: Diagnosing chronic heart failure is difficult, especially in mild cases or early in the course of the disease, and guidelines are not easily implemented in everyday practice. The aim of this study was to investigate general practitioners' diagnostic reasoning about patients with suspected chronic heart failure in comparison with recommendations in European guidelines. METHODS: Think-aloud technique was used. Fifteen general practitioners reasoned about six case vignettes, representing authentic patients with suspected chronic heart failure. Information about each case was added successively in five steps. The general practitioners said their thoughts aloud while reasoning about the probability of the patient having chronic heart failure, and tried to decide about the diagnosis. Arguments for and against chronic heart failure were analysed and compared to recommendations in guidelines. RESULTS: Information about ejection fraction was the most frequent diagnostic argument, followed by information about cardiac enlargement or pulmonary congestion on chest X-ray. However, in a third of the judgement situations, no information about echocardiography was utilized in the general practitioners' diagnostic reasoning. Only three of the 15 doctors used information about a normal electrocardiography as an argument against chronic heart failure. Information about other cardio-vascular diseases was frequently used as a diagnostic argument. CONCLUSIONS: The clinical information was not utilized to the extent recommended in guidelines. Some implications of our study are that 1) general practitioners need more information about how to utilize echocardiography when diagnosing chronic heart failure, 2) guidelines ought to give more importance to information about other cardio-vascular diseases in the diagnostic reasoning, and 3) guidelines ought to treat the topic of diastolic heart failure in a clearer way
    corecore