10 research outputs found

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams. </p

    Closing the renewable energy gender gap in the United States and Canada: The role of women’s professional networking

    No full text

    Web-Enabled and Improved Software Tools and Data Are Needed to Measure Nutrient Intakes and Physical Activity for Personalized Health Research123

    No full text
    Food intake, physical activity (PA), and genetic makeup each affect health and each factor influences the impact of the other 2 factors. Nutrigenomics describes interactions between genes and environment. Knowledge about the interplay between environment and genetics would be improved if experimental designs included measures of nutrient intake and PA. Lack of familiarity about how to analyze environmental variables and ease of access to tools and measurement instruments are 2 deterrents to these combined studies. This article describes the state of the art for measuring food intake and PA to encourage researchers to make their tools better known and more available to workers in other fields. Information presented was discussed during a workshop on this topic sponsored by the USDA, NIH, and FDA in the spring of 2009

    Supplement: Localization and broadband follow-up of the gravitational-wave transient GW150914

    No full text
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands
    corecore