254 research outputs found

    Chemical heterogeneity of the Emeishan mantle plume: Evidence from highly siderophile element abundances in picrites

    Get PDF
    Highly magnesian lavas or picrites have the potential to preserve important information about the origin and thermochemical state of the mantle source(s) of large igneous provinces. We have conducted a comprehensive study of highly siderophile element (HSE) concentrations in picrites from the ca. 260 Ma Emeishan large igneous province. We show that HSE abundances in the Emeishan picrites are greater than those in mid-ocean ridge basalts (MORBs) and parental melts of Hawaiian picrites, but are similar to those in komatiites. The picrites have two types of C1-normalized HSE patterns: (a) type 1, as represented by the Muli picrites is similar to that of the primitive upper mantle; (b) type 2, as represented by the Dali picrites resembles East Greenland and Iceland picrites. Pt/Ir and Pd/Ir ratios in the type 2 picrites are higher than those in type 1 picrites. The primary melt compositions of the studied samples have been estimated by back-addition of equilibrium olivine. The calculated HSE abundances of the parental liquids of the Dali and Muli picrites are higher than those of the parental melts to Hawaiian picrites. Along with previously published isotopic data, our study provides further evidence for chemical heterogeneity of the Emeishan mantle plume

    In search of late-stage planetary building blocks

    Get PDF
    Genetic contributions to the final stages of planetary growth, including materials associated with the giant Moon forming impact, late accretion, and late heavy bombardment are examined using siderophile elements. Isotopic similarities between the Earth and Moon for both lithophile and siderophile elements collectively lead to the suggestion that the genetics of the building blocks for Earth, and the impactor involved in the Moon-forming event were broadly similar, and shared some strong genetic affinities with enstatite chondrites. The bulk genetic fingerprint of materials subsequently added to Earth by late accretion, defined as the addition of ~0.5 wt.% of Earth's mass to the mantle, following cessation of core formation, was characterized by 187Os/188Os and Pd/Ir ratios that were also similar to those in some enstatite chondrites. However, the integrated fingerprint of late accreted matter differs from enstatite chondrites in terms of the relative abundances of certain other HSE, most notably Ru/Ir. The final ≤0.05 wt.% addition of material to the Earth and Moon, believed by some to be part of a late heavy bombardment, included a component with much more fractionated relative HSE abundances than evidenced in the average late accretionary component. Heterogeneous 182W/184Wisotopic compositions of some ancient terrestrial rocks suggest that some very early formed mantle domains remained chemically distinct for long periods of time following primary planetary accretion. This evidence for sluggish mixing of the early mantle suggests that if late accretionary contributions to the mantle were genetically diverse, it may be possible to isotopically identify the disparate primordial components in the terrestrial rock record using the siderophile element tracers Ru and Mo.NASA grants NNX13AF83G and NNA14AB07A NSF-CSEDI grants EAR1160728 and EAR1265169

    Insights into early Earth from the Pt-Re-Os isotope and highly siderophile element abundance systematics of Barberton komatiites

    Get PDF
    Highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance and Pt-Re-Os isotopic data are reported for well-preserved komatiites from the Komati and Weltevreden Formations of the Barberton Greenstone Belt in South Africa. The Re-Os data for whole-rock samples and olivine and chromite separates define isochrons with ages of 3484 +/- 38 and 3263 +/- 12 Ma for the Komati and Weltevreden systems, respectively. The respective initial Os-187/Os-188 = 0.10335 +/- 15 (gamma Os-187 = +0.34 +/- 0.15) and 0.10442 +/- 4 (gamma Os-187 = -0.14 +/- 0.04) are well within the range defined by chondritic meteorites. When considered together with the Re-Os data for late Archean komatiite systems, these data indicate that the mantle sources of most Archean komatiites evolved with essentially uniform long-term Re/Os that is well within the chondritic range. By contrast, the initial Os-186/Os-188 = 0.1198283 +/- 9 (epsilon Os-186 = -0.12 +/- 0.08) and 0.1198330 +/- 8 (epsilon Os-186 = +0.22 +/- 0.07) for the Komati and Weltevreden systems, respectively, are outside of known chondritic evolution paths, indicating that the mantle sources of these two komatiite systems evolved with fractionated time-integrated Pt/Os. The new 186,187 Os isotopic data for these early Archean komatiite systems, combined with published Nd-142,Nd-143 and Hf-176 isotopic data for these systems, are consistent with formation and long-term isolation of deep-seated mantle domains with fractionated time-integrated Sm/Nd, Lu/Hf, and Pt/Os ratios, at ca. 4400 Ma. These domains may have been generated as a result of late-stage crystallization of a primordial magma ocean involving Mg-perovskite, Ca-perovskite and Pt-alloys acting as the fractionating phases. The inferred fractionated mantle domains were sampled by the early Archean komatiites, but were largely mixed away by 2.7 Ga, as evidenced by uniform time-integrated Sm/Nd, Lu/Hf, and Pt/Os ratios inferred for the sources of most late Archean komatiite systems. The calculated total Pt + Pd abundances present in the sources of the early Archean komatiite systems fall only 7-14% short of those present in estimates for the modern primitive mantle. These are also within the range of the total Pt + Pd abundances present in the sources of late Archean komatiite systems, indicating little change in the HSE abundances in the Archean mantle between 3.5 and 2.7 Ga. The new HSE data for the early Archean komatiite systems may implicate late accretion of HSE to the mantle prior to completion of crystallization of a final terrestrial magma ocean, followed by sluggish mixing of diverse, post-magma ocean domains characterized by variably fractionated lithophile element and HSE abundances. (C) 2013 Elsevier Ltd. All rights reserved

    Highly Sideophile Element Abundance Constraints on the Nature of the Late Accretionary Histories of Earth, Moon and Mars

    Get PDF
    The highly siderophile elements (HSE) include Re, Os, Ir, Ru, Pt and Pd. These elements are initially nearly-quantitatively stripped from planetary silicate mantles during core segregation. They then may be re-enriched in mantles via continued accretion sans continued core segregation. This suite of elements and its included long-lived radiogenic isotopes systems (Re-187 (right arrow) Os-187; Pt-190 (right arrow) Os-186) can potentially be used to fingerprint the characteristics of late accreted materials. The fingerprints may ultimately be useful to constrain the prior nebular history of the dominant late accreted materials, and to compare the proportion and genesis of late accretionary materials added to the inner planets. The past ten years have seen considerable accumulation of isotopic and compositional data for HSE present in the Earth's mantle, lunar mantle and impact melt breccias, and Martian meteorites. Here we review some of these data and consider the broader implications of the compiled data

    Nickel and helium evidence for melt above the core–mantle boundary

    Get PDF
    High ^(3)He/^(4)He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-mantle source. This helium source may have been isolated at the core–mantle boundary region since Earth’s accretion. Alternatively, it may have taken part in whole-mantle convection and crust production over the age of the Earth; if so, it is now either a primitive refugium at the core–mantle boundary or is distributed throughout the lower mantle. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high ^(3)He/^(4)He. We propose that a less-degassed nickel-rich source formed by core–mantle interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by mantle plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core–mantle boundary

    Are 'hot spots' hot spots?

    Get PDF
    The term ‘hot spot’ emerged in the 1960s from speculations that Hawaii might have its origins in an unusually hot source region in the mantle. It subsequently became widely used to refer to volcanic regions considered to be anomalous in the then-new plate tectonic paradigm. It carried with it the implication that volcanism (a) is emplaced by a single, spatially restricted, mongenetic melt-delivery system, assumed to be a mantle plume, and (b) that the source is unusually hot. This model has tended to be assumed a priori to be correct. Nevertheless, there are many geological ways of testing it, and a great deal of work has recently been done to do so. Two fundamental problems challenge this work. First is the difficulty of deciding a ‘normal’ mantle temperature against which to compare estimates. This is usually taken to be the source temperature of mid-ocean ridge basalts (MORBs). However, Earth's surface conduction layer is ∼200 km thick, and such a norm is not appropriate if the lavas under investigation formed deeper than the 40–50 km source depth of MORB. Second, methods for estimating temperature suffer from ambiguity of interpretation with composition and partial melt, controversy regarding how they should be applied, lack of repeatability between studies using the same data, and insufficient precision to detect the 200–300 °C temperature variations postulated. Available methods include multiple seismological and petrological approaches, modelling bathymetry and topography, and measuring heat flow. Investigations have been carried out in many areas postulated to represent either (hot) plume heads or (hotter) tails. These include sections of the mid-ocean spreading ridge postulated to include ridge-centred plumes, the North Atlantic Igneous Province, Iceland, Hawaii, oceanic plateaus, and high-standing continental areas such as the Hoggar swell. Most volcanic regions that may reasonably be considered anomalous in the simple plate-tectonic paradigm have been built by volcanism distributed throughout hundreds, even thousand of kilometres, and as yet no unequivocal evidence has been produced that any of them have high temperature anomalies compared with average mantle temperature for the same (usually unknown) depth elsewhere. Critical investigation of the genesis processes of ‘anomalous’ volcanic regions would be encouraged if use of the term ‘hot spot’ were discontinued in favour of one that does not assume a postulated origin, but is a description of unequivocal, observed characteristics
    • …
    corecore