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Abstract 
 

17 

Highly magnesian lavas or picrites have the potential to preserve important information about 18 

the origin and thermochemical state of the mantle source(s) of large igneous provinces. We 19 

have conducted a comprehensive study of highly siderophile element (HSE) concentrations in 20 

picrites from the ca. 260 Ma Emeishan large igneous province. We show that HSE 21 

abundances in the Emeishan picrites are greater than those in mid-ocean ridge basalts 22 

(MORB) and parental melts of Hawaiian picrites, but are similar to those in komatiites. The 23 

picrites have two types of C1-normalized HSE patterns: (a) type 1, as represented by the Muli 24 

picrites is similar to that of the primitive upper mantle; (b) type 2, as represented by the Dali 25 

picrites resembles East Greenland and Iceland picrites. Pt/Ir and Pd/Ir ratios in the type 2 26 

picrites are higher than those in type 1 picrites. The primary melt compositions of the studied 27 

samples have been estimated by back-addition of equilibrium olivine. The calculated HSE 28 

abundances of the parental liquids of the Dali and Muli picrites are higher than those of the 29 

parental melts to Hawaiian picrites. Along with previously published isotopic data, our study 30 

provides further evidence for chemical heterogeneity of the Emeishan mantle plume. 31 

Key words: Emeishan large igneous province; picrite; highly siderophile elements; primary 32 

melt; mantle plume; chemical heterogeneity 33 

1. Introduction.  34 

  Continental flood basalts (CFBs) are produced during short-lived and highly productive 35 

magmatic events and are characterized by basalts derived, in part, from an anomalously hot 36 

and enriched mantle reservoir (Bryan and Ernst, 2008; Coffin and Eldholm, 1992; Campbell 37 

and Griffiths, 1990; Richards et al., 1989). Although the mantle plume model has become a 38 

‘paradigm’ for understanding the formation of CFBs over past three decades, other 39 

mechanisms have also been proposed for the formation of CFBs that do not invoke the 40 
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presence of mantle plumes (Anderson et al., 2005; Foulger et al., 2005; McHone, 2000). 41 

Plumes are thought to be generated through heat transfer across the core-mantle boundary, 42 

which causes a thermal instability resulting in diapiric ascent of a large buoyant mass of hot 43 

mantle material (Campbell, 2007; Campbell and Griffiths, 1990). CFBs may provide a 44 

window into the deep Earth that can reveal the chemical and physical properties of the mantle 45 

plumes. However, the chemical and isotopic signatures of mantle plumes are difficult to 46 

identify, due to the magmas assimilating materials from the lithospheric mantle, continental 47 

crust, and volcanic edifices along with the superimposed effects of fractional crystallization. 48 

Highly magnesian lavas are generally a minor component of CFBs, but perhaps provide the 49 

most important information about the primary melts of CFB provinces (Herzberg and Gazel, 50 

2009; Putirka et al., 2007)   51 

  The geochemistry of continental flood basalts in the Emeishan large igneous province 52 

(ELIP) has been interpreted as resulting from complex interactions between a mantle plume 53 

and heated lithospheric and asthenospheric mantle (Ali et al., 2005; Chung and Jahn, 1995; 54 

Hanski et al., 2004, 2010; Li et al., 2010; Song et al., 2008; Xu et al., 2001, 2004; Zhang et 55 

al., 2008, 2009). Although the Emeishan basalts are generally considered to be related to a 56 

mantle plume, the origin and chemical structure of the Emeishan plume is still a matter of 57 

debate. Some studies have suggested that the Emeishan mantle plume originated at the 58 

core-mantle boundary (CMB) as in the case of the Siberian CFBs (e.g., Li et al., 2010; 59 

Hanski et al., 2004; Lo et al., 2002). However, others studies consider that the Emeishan 60 

mantle plume originated from the upper-lower mantle boundary (e.g., Zhang et al., 2008). 61 

Abundances of highly siderophile elements (HSE) are useful for characterizing the 62 

geochemical history of mantle reservoirs (e.g., Chazey Iii and Neal, 2005; Dale et al., 2008; 63 

Ireland et al., 2009; Jamais et al., 2008; Maier et al., 2009; Puchtel and Humayun, 2001). The 64 

siderophile and chalcophile nature of HSE, including the platinum-group elements (PGE), 65 
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indicates that they should be highly enriched in Earth’s core and significantly depleted in the 66 

mantle (e.g., Barnes et al., 1985; Walker, 2000). Thus, integrated studies of HSE abundances 67 

and Re-Os isotopes can potentially reveal the effect of core-mantle interaction on the 68 

chemical heterogeneity of mantle plume (e.g., Brandon et al., 1999; McDonough, 2003; 69 

Brandon and Walker, 2005; Ireland et al., 2011; Walker et al., 1995).  70 

  The absolute and relative abundances of HSE have been determined in a number of 71 

previous studies measured HSE abundances in evolved lavas with MgO <7% and proposed 72 

that the observed fractionations of HSE resulted from the crystallization of olivine, chromite 73 

and a trace alloy with the latter being incorporated in olivine and/or chromite (Li et al., 2012; 74 

Qi and Zhou, 2008; Wang et al., 2007, 2011). Based on a small dataset, Wang et al. (2007) 75 

suggested that the diversity of HSE geochemistry in Emeishan CFBs was produced by crustal 76 

contamination. Wang et al. (2011) determined HSE concentration in a suite of intrusive rocks 77 

and low-magnesian lavas, and concluded that fractionation crystallization under either 78 

sulfur-undersaturated or sulfur-saturated conditions controlled the HSE behaviour. However, 79 

there have been few systematic studies of the HSE in highly magnesian lavas from the ELIP 80 

(i.e., MgO > 12 wt.%; Li et al., 2012).  81 

  To better understand the HSE systematics of the ELIP parental melts, we collected picrites 82 

(MgO >12 wt.%) and related tholeiitic basalts (MgO= 9-11 wt. %) from in the eastern part of 83 

the ELIP (Fig. 1). Compared with less primitive basalts, these highly magnesian lavas have 84 

the potential to provide more direct information about the thermochemical state of their 85 

source mantle (Herzberg et al., 2007; Herzberg and Gazel, 2009; Putirka, 2005; Wang et al., 86 

2007, 2012). As such, these primitive picrites and basalts may be particularly useful in 87 

constraining the HSE content of the mantle source of the Emeishan mantle plume, which is 88 

the primary objective of our study 89 
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2. Geological setting and samples 90 

The ELIP forms a massive Permian–Triassic succession of volcanic rocks along the 91 

western margin of the Yangtze Craton (Ali et al., 2005; Chung et al., 1995; Xu et al., 2001, 92 

2004; He et al., 2003). These volcanic rocks cover an area of >2.5  10
5
 km

2
, with a diameter 93 

of ~500 km (Chung and Jahn, 1995; Xu et al., 2004; Ali et al., 2005). The ELIP comprises a 94 

succession of tholeiites, with minor picritic and rhyolitic/trachytic lava flows. In addition to 95 

the extrusive rocks, mafic–ultramafic layered complexes, dikes, sills, and syenitic and other 96 

alkaline intrusions form part of the ELIP. Prior to the eruption of the ELIP, He et al. (2003) 97 

argued that large-scale lithospheric uplift occurred in the region, although this point is 98 

disputed by Utskins-Peate and Bryan. (2008) and Sun et al. (2010). The ELIP was formed 99 

during the Late Permian, but differing views still exist on the exact timing of the volcanism 100 

and its potential relationship to mass extinction events. SHRIMP zircon U–Pb dating of mafic 101 

intrusions, dikes, and volcanic rocks has produced ages of 257–263 Ma (Zhong et al., 2006; 102 

He et al., 2007; Zhou et al., 2008; Fan et al., 2008; Shellnutt and Jahn, 2011), whereas 103 

40
Ar/

39
Ar dating of volcanic and intrusive rocks has yielded ages of 254 ± 5 Ma (Boven et al., 104 

2002) and 251–253 Ma (Lo et al., 2002). More precise zircon U-Pb age determinations of 105 

mafic and silicic intrusive rocks from the ELIP have yielded a narrow range of ages between 106 

257 Ma and 260 Ma (Shellnutt et al., 2012). Consequently, it is now accepted that the 107 

Emeishan CFBs were erupted at ca. 260 Ma. 108 

The samples analyzed in this study were collected from the Dali and Muli areas (Fig. 1). 109 

Details about the samples, including their specific locations and whole-rock geochemistry, 110 

have been published elsewhere (Xu et al., 2001; Li et al., 2010; Hanski et al., 2010). The 111 

picrites from the Muli area are strongly altered and, apart from a few fresh clinopyroxene 112 

crystals, all primary magmatic minerals have been replaced by serpentine, talc, and chlorite. 113 
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Fresh olivine has not been found in these rocks, but the presence of olivine pseudomorphs 114 

indicates that olivine was abundant when the picrites were erupted. Fresh diopsidic 115 

clinopyroxene is present either as phenocrysts or in the matrix. Most of the Dali picrites are 116 

highly porphyritic (>25 vol.% phenocrysts) and contain abundant phenocrysts of forsteritic 117 

olivine, along with minor amounts of clinopyroxene ± orthopyroxene. Olivine phenocrysts 118 

are generally subhedral to rounded, occasionally embayed or partly resorbed, and are partially 119 

serpentinized along grain cracks and margins. Some olivine crystals host equant, euhedral to 120 

rounded Cr-spinel crystals that are a few tens of microns in diameter. Cr-spinel is also present 121 

as isolated grains in the groundmass. The groundmass consists principally of very 122 

fine-grained, intergrown clinopyroxene and plagioclase, as well as some devitrified glass. 123 

3. Analytical techniques 124 

For major and trace element analyses, volcanic rock samples were first split into small 125 

chips, and then soaked in 2 N hydrochloric acid for 1 h to remove alteration minerals. The 126 

rock chips were then powdered in an alumina ceramic shatter box. Major elements were 127 

determined by X-ray fluorescence (XRF) spectrometry on fused glass disks, whereas trace 128 

element were measured with a Perkin Elmer Elan 6000 inductively coupled plasma-mass 129 

spectrometer (ICP–MS) at the Guangzhou Institute of Geochemistry, Chinese Academy of 130 

Science (GIG-CAS). Analytical uncertainties are ±1%–2% for major elements, ±5% for 131 

rare-earth elements, ±5%–10% for other trace elements. Full details of the analytical 132 

procedures are described by Chen et al, (2010).  133 

For PGE and rhenium concentration measurements, rock samples were first split into small 134 

chips using a hammer wrapped in paper to avoid contamination. All PGE abundances were 135 

determined by isotope dilution techniques. Approximately 2 g of whole rock powder was 136 

combined with a mixed PGE spike (
190

Os, 
191

Ir, 
99

Ru, 
194

Pt, 
105

Pd and 
185

Re) and attacked for 137 
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24 h at 240°C in Carius tubes with reverse aqua regia (3 ml concentrated HCl+ 9 ml 138 

concentrated HNO3) (Shirey and Walker, 1995). Osmium was extracted from the Re- and 139 

PGE-bearing solution as OsO4 into carbontetrachloride (CCl4) and back-extracted into HBr 140 

(Cohen and Waters, 1996). Final purification of the Os was achieved by microdistillation. 141 

Osmium abundances were measured using a Thermo-Finnigan TRITON® thermal ionization 142 

mass spectrometer (TIMS) in negative ion detection mode (Creaser et al., 1991; Volkening et 143 

al., 1991) at GIG-CAS.  144 

Rhenium, Ir, Ru, Pt, and Pd were separated from aqua regia by cation exchange 145 

chromatography using pre-cleaned Bio-Rad AG 50W-X8 resin (100–200 mesh). To eliminate 146 

Cr-based polyatomic interferences on 
101

Ru, which may result in erroneously elevated Ru 147 

abundances if measurements are performed by ICP-MS (Meisel et al., 2008), 1 mL of 30% 148 

H2O2 was added to reduce Cr (VI) to Cr (III) before loading onto the cation exchange column. 149 

Rhenium, Ir, Ru, Pt and Pd were eluted with 30 mL of 0.5 N HCl. However, the PGE 150 

fractions after cation exchange chemistry still contain significant amounts of impurities such 151 

as Mo, Zr and Hf whose oxide species can interfere on PGE masses. As such, a clean-up 152 

procedure using Amberchrom CG-71m resin coated with N-benzoyl-N-phenylhydroxylamine 153 

(BPHA) was carried out to eliminate Mo, Zr and Hf (Li et al., 2013). Rhenium, Ir, Ru, Pt and 154 

Pd are not absorbed onto the resin and were eluted with 7 mL of 0.5 N HCl into the same 155 

fraction. The eluted solution was evaporated to near dryness and dissolved in 0.3 N HNO3 for 156 

ICP-MS analysis. 157 

Rhenium, Ir, Ru, Pd and Pt abundances were measured by isotope dilution on a 158 

Thermo-Scientific XSERIES-2 ICP-MS. The sample was introduced to the plasma with a 159 

conventional Scott-type glass spray chamber. We measured the following isotope masses for 160 

PGE and Re concentration calculations: 
99

Ru, 
100

Ru, 
101

Ru, 
105

Pd, 
106

Pd, 
108

Pd, 
185

Re, 
187

Re, 161 

191
Ir, 

193
Ir, 

194
Pt, and 

195
Pt. Isotope masses of 

90
Zr, 

95
Mo, 

111
Cd, 

178
Hf and 

192
Os were also 162 
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monitored to allow isobaric interference corrections to be made where necessary. Interference 163 

corrections were typically negligible, and only an 
106

Cd interferences on 
106

Pd was significant 164 

(ca, 5% correction) in some samples. Oxide formation (CeO
+
/Ce

+
) was minimized by tuning 165 

to ≤1.5%. Instrumental mass fractionation was determined and corrected for by bracketing 166 

analyses of a 2 ng/g of PGE standard solution. The Pt blank over the period of this study 167 

ranged from 25 to 40 pg. Other PGE and Re blanks are generally ≤10 pg. All the presented 168 

concentration data have been blank corrected. The blank contributions to measured PGE 169 

contents were <2% for all samples, and for Re contents were <10 % for most samples. 170 

Analytical results for standard reference materials, including BHVO-2 (basalt) and WPR-1 171 

(peridotite) are presented in Table 1. The standard PGE and Re concentration data obtained 172 

here show good agreement with those reported by Meisel and Moser (2004). The poorer 173 

reproducibilities of PGE concentrations in BHVO-2 may reflect sample heterogeneity (i.e., 174 

the “nuggets effect”). 175 

4. Results 176 

  Major and trace element data and HSE concentrations for picrites and related basalts are 177 

presented in Table 2 and 3. Picrites from the Muli and Dali area are characterized by high 178 

MgO (>12wt.%), Mg# (Mg# = Mg/[Mg + Fe
2+

]; Mg# > 71; assuming Fe
2+

 = 0.9  total Fe), 179 

Cr (610-2570 ppm) and Ni (320-1327 ppm). This indicates that these picrites are primitive 180 

samples and may represent, or be almost, primary melts. In contrast, four basaltic samples 181 

have relatively low compatible elements contents (Table 2). The Muli picrites hvae a large 182 

range of La/Yb (1.2-10.9) and Al2O3/TiO2 ratios (5.6-10.1), whereas with the exception of 183 

one sample (RX-1), the Dali picrites have almost constant La/Yb (5.4-5.7 for the DL suite 184 

and 8.9-9.2 for the RX suite) and Al2O3/TiO2 ratios (8.3-9.2 for the DL suite and 4.8-5.3 for 185 

the RX suite). 186 
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  The absolute HSE abundances in all the picrites are greater than those in MORB and in the 187 

parental magmas of Hawaiian picrites, but are similar to those in komatiites (Figs. 2 and 3). 188 

The concentrations of I-group PGEs (Os, Ir, and Ru = 0.2–2.4 ppb) in all samples are less 189 

than estimates for primitive upper mantle (e.g., Becker et al., 2006), whereas concentrations 190 

of p-group PGEs (Pd and Pt, Pt concentrations range from 2.6 to 27.8 ppb) are comparable to 191 

estimate for PUM. With the exception of Re, HSE concentrations in the Emeishan picrites are 192 

generally similar to the abundances reported for the picrites from Hawaiian, Iceland and East 193 

Greenland (Fig. 3).  194 

  Chondrite-normalized HSE patterns of the Muli picrites are characterized by relatively 195 

uniform Pt/Ir (typically 7-10; average=9.3 ± 4.2) and Pd/Ir (typically 1.9-5.9; average of 4.3 196 

± 1.9). These rocks can be divided into two sub-types in terms of Re abundances. One type is 197 

strongly depleted in Re, with concentrations that are significantly lower than those in MORB. 198 

The other type is slightly depleted in Re with abundances comparable to Hawaiian picrites 199 

and MORB (Fig. 3). HSE patterns are similar to picrites from East Greenland with consistent 200 

Os-Ir-Ru pattern, but higher Pt and Pd abundances as compared with Iceland picrites and 201 

MORB (Fig. 3). The Dali picrites are characterized by more fractionated Pt/Ir (8-33; average 202 

=15.9 ± 8.4) and Pd/Ir (1.3-12.1; average= 6.6 ±3.0) ratios than the Muli picrites. 203 

  When considering data for the entire picrite suite, Os, Ir, Ru, Pt and Pd are negatively 204 

correlated with SiO2 and Al2O3 (Fig. 4a and 4b). Osmium, Ir and Ru in the Muli picrites 205 

correlate positively with MgO (Fig. 5). Inflections appear at MgO contents of ca. 18 wt.% on 206 

plots of Os, Pt, Pd, and Re versus MgO (Fig. 5). At MgO contents <18 wt.%, Os, Pt, and Pd 207 

decrease with decreasing MgO, whereas at MgO contents >18 wt.%, these PGE increase with 208 

decreasing MgO. The Dali picrites exhibit a small range of MgO contents (17-23 wt.%) and 209 

display broad correlations on plots of Os-, Ir-, and Re versus MgO. PGE concentrations in the 210 

Muli picrites correlate strongly with Cr and Ni with inflections at Ni ≈ 700 ppm on the 211 
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Ni-MgO trend (Figs. 5 and 6b). PGE contents of the Dali picrites are highly variable, and do 212 

not show systematic trend with MgO contents (Figs. 6a and 6b). 213 

5. Discussion 214 

Highly siderophile elements in the Emeishan picrites exhibit a large range in absolute and 215 

relative abundances (Table 3; Figs. 2 and 3). These variations can be attributed to several 216 

factors, including volatile losses in subaerial and shallow submarine flows (e.g., Ireland et al., 217 

2009; Lassiter, 2003; Norman et al., 2004; Sun et al., 2003), crystal-liquid fractionation, and 218 

crustal contamination processes (AFC) (e.g., Righter et al., 2004; Dale et al., 2008; Jamais et 219 

al., 2008; Qi and Zhou, 2008; Ireland et al., 2009; Wang et al., 2011; Zhong et al., 2011). 220 

Volatile loss can affect abundances of Re and perhaps Ir. Prior to using the HSE to 221 

characterize the mantle source of the Emeishan picrites, these potential secondary effects 222 

need to be considered.  223 

5.1. Estimation of parental melt compositions 224 

Estimation of a parental melt composition is essential in trying to deconvolve the effects of 225 

crystal-liquid fractionation on HSE abundances. The parental melt represents the most 226 

primitive magma that was produced directly by melting of the mantle source. Samples that 227 

have major element compositions approaching the estimated parental melt compositions are 228 

presumed to have experienced olivine fractionation following separation from their mantle 229 

sources (e.g., Herzberg et al., 2007; Herzberg and Gazel, 2009; Putirka, 2005, 2007). 230 

Consequently, these samples best preserve the HSE composition of the parental melt. 231 

Samples that deviate from the parental melt composition have likely experienced variable 232 

amounts of crystal-liquid fractionation and/or crustal contamination.   233 
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   Parental melt compositions of basaltic rocks can be estimated by addition or subtraction 234 

of equilibrium olivine back into or from selected samples, that have experienced fractional 235 

crystallization or accumulation of only olivine (e.g., Danyushevsky et al., 2000; Putirka, 2005; 236 

Herzberg et al., 2007; Wang et al., 2012). Despite the fact that compatible element contents 237 

(e.g., MgO, Cr, and Ni) of the studied picrites are similar to those of melts derived directly 238 

from the mantle, the linear trends evident in Figs. 4-6 clearly show that variable proportions 239 

of olivine accumulation and removal have played an important role in the generation of these 240 

picrites. A series of olivine and basalt compositions were calculated from starting materials as 241 

follows: (1) the composition of equilibrium olivine was obtained using KD (Fe/Mg)
oliv/liq

 = 242 

0.33 (Putirka, 2005), assuming that Fe
2+

/(Fe
2+ 

+ Fe
3+

) = 0.90 in the melt (Frost and 243 

McCammon, 2008); (2) a more primitive basalt composition was calculated as a mixture of 244 

the basalt and equilibrium olivine in a weight ratio of 99.9:0.1; (3) steps (1) and (2) were 245 

repeated using the calculated primitive basalt to progressively obtain more primitive basalt 246 

compositions (Wang et al., 2012). The calculated of olivine and basalt compositions were 247 

repeated until the calculated equilibrium olivine had a forsterite content of Fo91. Mg-rich 248 

olivine phenocrysts in the Lijiang (Zhang et al., 2006) and Dali picrites (Hanski et al., 2010) 249 

of the western Emeishan CFB province, have Fo values up to 91.6 and 93.5, respectively. To 250 

minimize the effects of clinopyroxene fractionation and alteration, only samples with MgO ≥ 251 

12 wt.%, CaO >9 wt.%, SiO2 ≥ 44 wt.% and loss on ignition < 5 wt.% were chosen as 252 

starting materials. Six samples (ML-04-33 and DL08-5, -6, -7,-8, and -16) were chosen as 253 

starting materials to these calculations the parental melts. The estimated arental melts have 254 

47-48 wt.% SiO2, 17-19 wt.% MgO, 8.5-11 wt.% Al2O3, 9.0-10.5 wt.% FeO, and 9-11 wt.% 255 

CaO (Table 4). The uncertainties are mainly due to the variability of KD (Fe/Mg)
oliv/liq

 and 256 

Fe
2+

/Fe
total

 (Putirka, 2005), which will result in uncertainties ca. 3% for MgO and ca. 1% for 257 

SiO2, Al2O3 and CaO. Variability in the compositions of high-Mg olivine phenocrysts (Fo > 258 
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90) may also contribute to the uncertainties. Even considering these uncertainties, our 259 

estimates likely represent the minimum values of the major element compositions of the 260 

primary melts.  261 

5. 2. Effects of volatile loss and alteration on PGE and Re abundances 262 

   Volatile loss has been demonstrated to play an important role in the Re depletion of 263 

basaltic rocks (Sun et al., 2003; Lassiter, 2003; Norman et al., 2004). This effect may cause 264 

fractionation of Re from the other HSE. The potential for Re loss is consistent with 265 

petrographic evidence that shows the Muli picrites are highly altered, but relatively less so in 266 

the case of the Dali picrites. In general, chondrite-normalized HSE patterns for picritic suites 267 

show marked Re enrichments (Ireland et al., 2009). However, in the Muli lavas that were 268 

erupted in a subaqueous or in a shallow marine environment, chondrite-normalized HSE 269 

patterns show relative depletions of Re, which is consistent with Re loss from the lava flows. 270 

Five Muli picrites (ML-32, ML04-17, ML04-19, ML-04-23, and ML-04-49) have chondrite 271 

normalized Re values of <0.001 and show a strong depletions in Re on chondrite-normalized 272 

HSE patterns (Fig. 3). The DL picrites with flat Pt-Pd-Re patterns do not show such obvious 273 

depletions in Re abundances, although these can be observed in RX samples (Fig. 3).  274 

Good correlations between an immobile element and another selected element can be taken 275 

as evidence of immobile element behavior (Polat and Hofmann, 2003; Wang et al., 2008; 276 

Wang et al., 2010). Aluminum (Al) is the most immobile element during low-temperature 277 

alteration of highly magnesian lavas (i.e., Komatiites, P131-148). As shown in Fig. 4b, but 278 

with the exception of samples RX-12, ML04-33, and ML04-49, all samples show good 279 

correlations between PGE concentrations and Al2O3 contents. This suggests that all the PGE 280 

(apart from Re) have essentially been immobile during low-temperature alteration. Although 281 

the samples have a large range in PGE abundances, all the studied samples show uniform 282 
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chondrite normalized patterns (with the exception of Re). This provides further evidence for 283 

the immobility of most PGE elements in our studied picrites. In contrast, there is no 284 

meaningful correlation between Re and Al2O3 (Fig. 4b), which suggests Re was mobile 285 

during alteration.  286 

 287 

5. 3. HSE characteristics of the parental melts 288 

  Given the linear trends evident in Figs. 4-6, the removal and accumulation of olivine can 289 

be assumed to have had a major effect on the absolute and relative HSE abundances in the 290 

studied picrites. This may be attributable to the co-precipitation of phases such as PGE alloys 291 

with the olivine phenocrysts (Ireland et al., 2009 and references therein). Combining the 292 

linear trend of HSE versus MgO and the estimated primary MgO contents can provide 293 

first-order constraints on the HSE composition of the parental melts for each picritic suite 294 

(Fig. 7). Osmium, Ir, and Ru contents of the Muli parental melt were estimated using this 295 

method to be: Os = 2.59 ± 0.30 ppb, Ir = 1.84 ± 0.45 ppb and Ru = 3.00 ± 0.69 ppb (all 2 SD). 296 

Platinum and Pd exhibit more a complex behavior and the estimates for Pt (16 ± 4 ppb) and 297 

Pd (10 ± 4 ppb) contents in the parental melts are based on the positive linear correlations 298 

defined by samples with MgO <20 wt.%. The Muli picrites do not display a linear correlation 299 

between Re and MgO, indicating that olivine fractionation and/or accumulation has had little 300 

effect on Re fractionation and concentrations. The Re concentration (0.25 ± 0.05 ppb) in the 301 

parental melts of the Muli picrites is derived from the average Re concentration for samples 302 

ML-28, ML04-20, ML04-45. Li et al. (2010) considered that these three samples were 303 

derived directly from the Emeishan mantle plume source with little or no lithospheric 304 

contamination.   305 
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  In the Dali picrites, the DL samples defined good correlations between Os, Ir and Ru and 306 

MgO (Fig. 5). Osmium, Ir, and Ru contents of the DL parental melts were estimated as 307 

follows: Os = 0.88 ± 0.34 ppb, Ir = 0.80 ± 0.34 ppb, Ru = 1.90 ± 0.82 ppb. Platinum, Pd and 308 

Re do not display clear linear correlations with MgO in the DL suite, which indicates that 309 

olivine fractionation may have exerted little control on Pt, Pd and Re concentrations. The 310 

parental melt concentrations for these three elements can be constrained by the average of 311 

samples with MgO = 18–20 wt.% (Pt = 11.2 ± 1.5 ppb, Pd = 6.40 ± 0.97 ppb, Re = 0.45 ± 312 

0.07 ppb). The RX samples do not display significant correlations between PGE 313 

concentrations and MgO content, perhaps due to their limited range and high values of MgO 314 

contents. PGE concentrations of the parental melts for the RX samples were constrained by 315 

the average values of these picrites (Os = 1.45 ± 0.74, Ir = 0.98 ± 0.38, Ru = 2.01 ± 0.26, Pt = 316 

12.3 ± 6.5 and Pd = 3.42 ± 0.47 ppb).  317 

The estimated HSE abundances of the parental melt for the Dali and Muli picrites are 318 

higher than the estimates for parental melts to Hawaiian picrites (Os =0.50-1.0, Ir = 0.38-0.50, 319 

Ru = 2.20-2.55, Pt = 2.20-2.25, Pd = 2.20 and Re = 0.30 -1.20 ppb; Ireland et al., 2009), and 320 

are consistent with previously published parental magma HSE concentrations for Emeishan 321 

picrites (Ir = 1.32, Ru = 1.96, Rh = 0.65, Pt = 5.79 and Pd = 7.93 ppb; Li et al., 2012). 322 

 323 

5. 4. Estimated bulk distribution coefficients 324 

  Linear regressions between PGE concentrations and MgO contents can be used to estimate 325 

bulk solid-melt partition coefficients (i.e., D values; Ireland et al., 2009; Puchtel and 326 

Humayun, 2001). Applying the same method proposed by Ireland et al. (2009), we estimated 327 

the bulk HSE concentrations in the co-precipitating solid phases. In the Muli and DL picrites, 328 

estimated D values for Os (3.4 and 3.6, respectively), Ir (4.0 and 4.3) and Ru (1.7 and 1.8) 329 
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indicate that these elements all behaved compatibly. Our estimated D values are similar to 330 

those for Hawaiian picrites (eg., DOs= 2.2 -7.1, Ireland et al., 2009). Platinum and Pd 331 

normally behave incompatibly in mafic to ultramafic systems in the absence of sulfides (e.g., 332 

Maier et al., 2009; Puchtel et al., 2009), whereas Pt and Pd display a complex behavior in our 333 

picrites samples (Fig. 5). At MgO ≤ 19 wt.%, Pt and Pd are generally positively correlated 334 

positively with MgO, indicating that these two elements were behaving compatibly. At 335 

MgO >19 wt.%, Pt and Pd decrease with increasing MgO. These negative correlations may 336 

suggest that the PGE are hosted in chromite and sulfide inclusions present within the olivine 337 

grains, rather than structurally bound within the olivine lattice (e.g., Brenan et al., 2003, 2005; 338 

Ireland et al., 2009; Puchtel et al., 2001).  339 

5.5. PGE and Re behavior during basalt petrogenesis  340 

5.5.1 Lithosphere assimilation 341 

Assimilation of lithosphere (crust and mantle) can also potentially affect the HSE 342 

characteristics and Os isotopic composition of a melt (e.g., Jamais et al., 2008). Assimilation 343 

of continental crust by the Emeishan CFBs has been suggested for highly evolved lavas from 344 

Guizhou (MgO< 8 wt.%) (Qi and Zhou, 2008). However, the Muli picrites with the most 345 

radiogenic Os isotope compositions also have high Os concentrations (> 1.8 ppb) (Li et al., 346 

2010). Mass balance calculations demonstrated that assimilation of ca. 50-60% crust would 347 

be required to produce the radiogenic Os of the Muli picrites (Li et al., 2010). However, this 348 

is inconsistent with the major element chemistry of the picrites. Addition of more 349 

geologically realistic amounts of crust (<5%) would not result in resolvable variations of the 350 

HSE abundance. A hypothetical mixture of the Muli picrites, ingestion of 10% of upper 351 

continental crust component (0.02 ppb Os; 
187 

Os/
188

Os =0.8, γOs= +540; Esser and Turekian, 352 

1993) with 260 Ma picritic melts (1.2 ppb Os, 
187

Os/
188

Os = 0.1252, and γOs=0; Li et al., 2010) 353 
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would result in a net change in the Os isotopic composition of the contaminated melt by only 354 

+0.9 γ unit. We therefore conclude that crustal contamination is unlikely to have significantly 355 

affected the HSE composition of our studied picrites. 356 

Another mechanism to produce the observed HSE fractionations is silicate liquid 357 

immiscibility brought about by changes in the sulfur saturation state, and separation of an 358 

immiscible sulfur liquid and/or crystallization of sulfied minerals (Charlier et al., 2011). This 359 

requires that the highly magnesian volcanism was spatially and temporally associated with 360 

high-silica and high-iron melts (Jakobsen et al., 2005, 2011). However, the following lines of 361 

evidence rule out this possibility. Firstly, there are no high-silica igneous rocks spatially and 362 

temporally associated with the highly magnesium volcanism. Secondly, results from 363 

experimental studies that show that silicate liquid immiscibility in basaltic magma only starts 364 

at low temperatures and is limited to the final stages of magma crystallization (Jakobsen et al., 365 

2011; references therein). In contrast, our studied samples are high-temperature and primitive 366 

magmas. Thirdly, the studied picrites defined a clear negative correlation between Fe2O3
T
 and 367 

SiO2 (Fe2O3
T
 = -9.702×ln (Fe2O3T) + 49.044, r

2
 = 0.63). This correlation is also inconsistent 368 

with the predicted effects of silicate liquid immiscibility. 369 

Our currently available data cannot rule out assimilation of sub-continental lithospheric 370 

mantle during the ascent of the plume-derived melts through lithosphere. This is due to the 371 

fact that the Muli picrites have unradiogenic initial Os and Nd isotopic compositions with 372 

γOs (260 Ma) and εNd (260 Ma) values ranging from −4.2 to +11.5 and −5.5 to +6.4, 373 

respectively (Li et al., 2010).  374 

5.5.2 Effects of partial melting and crystal-liquid fractionation 375 

Partial melting is a potential controlling factor in producing HSE fractionations (e.g., 376 

Barnes et al., 1985; Shirey and Walker, 1998; Pearson et al., 2004; Ireland et al., 2009). The 377 
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distinctive chondrite-normalized patterns, and relative and absolute contents of HSE are 378 

observed in different types of mantle-derived melts, such as some komatiites and typical 379 

MORB. Higher degree partial melts (>20%), such as some komatiites, have relatively flat 380 

chondrite-normalized HSE patterns that approach chondritic Pd/Ir ratios (Puchtel and 381 

Humayun, 2000, 2001b; Puchtel et al., 2004, 2005). In contrast, low-degree partial melts, 382 

such as typical MORB, are generally characterized by fractionated chondrite-normalized 383 

HSE patterns with high Pd/Ir and Pt/Ir ratios (Rehkamper et al., 1999; Bezos et al., 2005; 384 

Dale et al., 2008; Ireland et al., 2009). 385 

Chondrite-normalized PGE patterns for the estimated Emeishan parental melts are 386 

comparable with those of komatiites and parental melts to Hawaiian picrites, which have 387 

been attributed to limited retention of I-PGE in their mantle sources due to saturation in 388 

Ir-(Os) alloys (e.g., Ireland et al., 2009; Fiorentini et al., 2011). Fractionation between I-PGE 389 

and P-PGE suggests the presence of residual sulfide in the plume source (Bennett et al., 390 

2000).  391 

The Muli and DL suite picrites exhibit positive correlations between I-PGE and MgO, Ni 392 

and Cr (Figs. 5 and 6). Although the RX samples do not show significant linear correlations, 393 

data for these samples largely fall on the trend defined by data for the DL picrites. This 394 

implies that early fractional crystallization of olivine, spinel and clinopyroxene is effective in 395 

removing the I-PGE from the magma. During the early stages of crystal fractionation, I-PGE 396 

may form laurite and Os–Ir–Ru alloys (e.g., Amosse et al., 1990; Capobianco and Drake, 397 

1990; Qi and Zhou, 2008), which become trapped in early crystallizing phases, such as 398 

chromite and olivine (e.g., Puchtel and Humayun, 2000), and this effectively removes the 399 

I-PGE from the melt (Qi and Zhou, 2008).  400 



 18 

The Muli picrites show a change in trends of Pt and Pd versus MgO diagram at MgO= ~ 19 401 

wt.%. In plots of Pt and Pd versus Ni inflections also characterize the trends at Ni = 900 ppm. 402 

The Ni-MgO correlation in the Muli suite can be described by a regression where Ni (ppm) = 403 

70.1× MgO (wt.%)-395. At MgO = 19 wt.% , this corresponds to Ni = 937 ppm for the 404 

parental melt. This suggests that the parental melts have the highest Pt and Pd values. The 405 

steep chondrite-normalized PGE patterns of the analyzed picrites clearly indicate 406 

fractionation between I-PGE and P-PGE (Fig. 3). A positive correlation between Os and Cr 407 

(Fig. 6a) thus suggests that the PGE variations may be partially attributed to early 408 

fractionation of olivine (± chromite).  409 

5.5.3 Source heterogeneities 410 

Estimated PGE concentrations are highly variable in the primary melts of the Dali and 411 

Muli picrites. Due to the lack of systematic difference in partial melting processes in 412 

producing the Muli and Dali picrites, the large variations in absolute and relative HSE 413 

abundances most likely reflects source heterogeneity. Furthermore, the large range in 414 

Al2O3/TiO2 and La/Yb ratios provides further evidence for source heterogeneity. Given that 415 

olivine fractionation or accumulation cannot fractionate these two ratios from their source 416 

values, the variations must reflect the crustal contamination and/or source heterogeneity. 417 

However, as crustal contamination was insignificant in generating the Dali and Muli picrites 418 

the large range in Al2O3/TiO2 and La/Yb ratios suggests the Emeishan mantle plume was 419 

heterogeneous. The PGE contents in Muli picrites broadly correlate with Al2O3/TiO2 and 420 

La/Yb ratios (apart from Re; Figs. 8 and 9), and, as such the PGE can be used to infer the 421 

source heterogeneity. This is consistent with Os-Nd-Sr isotope and elemental analyses of the 422 

Muli picrites (Li et al., 2010). Li et al., (2010) proposed that the generation of the Muli 423 

picrites involved at least three reservoirs, which were enriched and depleted plume source, 424 

and sub-continental lithospheric mantle. Plume-lithosphere interaction played an important 425 
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role in producing the geochemical diversity of the Emeishan CFBs (e.g., Li et al., 2010; Xiao 426 

et al., 2004). The Muli picrites have a large range of initial Os isotopic compositions with Os 427 

(260 Ma) = +11 to -5 (Li et al., 2010). These Os isotopic variations require long-term 428 

differences in the Re/Os ratios of the mantle sources. Previous studies have attributed the 429 

187
Os/

188
Os variations to the presence of recycled oceanic lithosphere and plume-lithosphere 430 

interaction (Li et al., 2010). The enrichment of 
187

Os may reflect the contributions from a 431 

recycled oceanic lithospheric component or Earth’s core (Li et al., 2010). Partial melting 432 

modeling shows that incorporation of a small proportion of outer core materials (ca. 0.1%) 433 

could explain the high PGE contents of the Muli picrites (Fig. 10). Other factors, such as the 434 

degree of partial melting, may also influence HSE concentrations, as a melt fraction which is 435 

just sufficient to exhaust sulfied in the source will produce a more HSE-rich melt than one 436 

resulting from a much higher degree of partial melting, where the HSE are further 437 

HSE-poorer melt. If this is correct, then correlations (and inflections) between HSE 438 

concentrations and La/Yb ratios in Fig. 9 are to be expected, because La/Yb ratios in a mafic 439 

to ultramafic magmas are directly related to the melt fraction. However, our data show no 440 

meaningful correlations between La/Yb and HSE concentrations and, as such we prefer the 441 

core-addition to explain the high HSE concentrations of the Emeishan picrites.  442 

6. Conclusions  443 

  The Emeishan picrites are characterized by high absolute abundances of HSE. Chondrite 444 

-normalized HSE patterns of the picrites can be divided into two types: (a)Type-1, as 445 

represented by the Muli picrites, are similar to PUM with lower overall I-PGE abundances 446 

and lower relative and absolute Re abundances; (b) Type-2, as represented by the Dali picrites, 447 

are similar to those of East Greenland and Iceland picrites, which are characterized by more 448 
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fractionated Pt/Ir (8.6–34.5; average = 15.9 ± 8.4) and Pd/Ir (1.3–12.1; average = 6.6 ±3.0) 449 

ratios relative to Type-1 picrites. 450 

We estimated the major element compositions of parental melts for the picrites using 451 

back-addition of equilibrium olivine into selected whole-rock compositions. The estimated 452 

primary melts of the picrites have MgO contents of ca. 18-19 wt.%. The effects of 453 

crystal-liquid fractionation processes are evident in plots of HSE abundances versus MgO. 454 

For those plots that show broad linear trends between HSE and MgO regression of these 455 

trends provides a means to estimate the HSE composition of the parental melts for each 456 

picritic suite. The HSE concentrations at MgO = 19 wt.% on these regressions were used to 457 

define the primary HSE abundances of the parental melts. However, the primary abundances 458 

of some elements that do not correlate with MgO were estimated by the average compositions 459 

of the samples that have MgO contents similar to those estimated for primary melts. 460 

Estimated HSE concentrations for the Muli picrites are Os = 2.59 ± 0.30, Ir = 1.84 ± 0.45, Ru 461 

= 3.00 ± 0.69, Pt = 16 ± 4, Pd = 10 ± 4, and Re = 0.25 ± 0.05 ppb (±2SD). The estimated 462 

HSE concentrations for the DL picrites from the Dali suite are Os = 0.88 ± 0.34, Ir = 0.80 ± 463 

0.34, Ru = 1.90 ± 0.82. Pt = 11.2 ± 1.5, Pd = 6.40 ± 0.97, and Re = 0.45 ± 0.07 ppb. The RX 464 

samples do not display significant correlations between PGE concentrations and MgO 465 

content, and so the HSE contents of parental melts for the RX samples were constrained by 466 

the average PGE values of these primitive picrites (MgO = 20–21 wt.%). The obtained 467 

average values are Os = 1.45 ± 0.74, Ir = 0.98 ± 0.38, Ru = 2.01 ± 0.26, Pt = 12.3 ± 6.5, and 468 

Pd = 3.42 ± 0.47 ppb. The estimated parental melt HSE abundances for the Dali and Muli 469 

picrites are generally similar to, but higher than, estimates for parental melts of Hawaiian 470 

picrites. 471 

The HSE display a large range of absolute and relative abundances in the Emeishan 472 

picrites. Detailed consideration of the PGE geochemistry shows that this reflects the 473 
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integrated effects of source heterogeneity, partial melting, plume–lithosphere interaction, and 474 

early fractionation of olivine (± chromite). Our estimated HSE abundances for primary melts 475 

of the Emeishan picrites, combined with previously published isotopic data, provide new 476 

evidence that the Emeishan mantle plume was chemically heterogeneous. 477 

 478 
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Table captions 736 

Table 1. Analytical data (in ng/g) for reference materials BHVO-2 (basalt) and WPR-1 (peridotite). 737 

Table 2. Major and trace element concentrations of picrites from the Muli and Dali areas (ML = Muli 738 

area; RX and DL = Dali area). 739 

Table 3. Highly siderophile element (HSE) concentrations of picrites from the Muli and Dali areas. 740 

Table 4. Results of primary melt calculations using Herzberg modeling. 741 

742 



 30 

Figure captions 743 

Fig. 1 Schematic illustration of the geological features of the Emeishan Large Igneous Province, also 744 

showing sample locations (modified after Xu et al., 2004). 745 

Fig. 2 Total PGE contents plotted versus MgO. The reference fields are from Ely and Neal (2003) and 746 

data for the Emeishan basalts and picrites are from Li et al. (2012). 747 

Fig. 3 CI-chondrite-normalized HSE patterns for (a) Muli and (b) Dali picrites. Primitive upper mantle 748 

(PUM) is considered to be representative of fertile peridotites prior to depletion of the upper mantle 749 

(Becker et al., 2006). The reference MORB field is modified after Dale et al. (2008). The primitive 750 

melt for Hawaiian picrites is an average of individual parental melts (Ireland et al., 2009). The 751 

chondrite normalizing values are from McDonough and Sun (1995). Data sources: east Greenland 752 

picrites — Momme et al. (1997, 2006); Iceland picrites — Momme et al. (2003); Hawaiian picrites — 753 

Bennett et al. (2000), Ireland et al. (2009), and Pitcher et al. (2009). 754 

Fig. 4 PGE concentrations in the Muli and Dali picrites plotted versus (a) SiO2 and (b) Al2O3. The 755 

dashed lines indicate the correlation between PGE contents and SiO2 or Al2O3. 756 

Fig. 5 PGE concentrations in the Muli and Dali picrites plotted versus MgO. Due to the narrow range 757 

of MgO contents in the Dali samples, the two picrite suites are shown separately on different plots.  758 

Fig. 6 PGE concentrations in Muli and Dali picrites plotted versus (a) Cr and (b) Ni contents. 759 

Fig. 7 Example of how the parental HSE melt contents were estimated using Os abundances from the 760 

Muli picrites. The parental melt was assumed to contain 19 wt.% MgO and its Os abundance was 761 

determined by linear regression through the data. Three samples do not plot on the regression 762 

trend. 763 

Fig. 8 PGE concentrations plotted versus Al2O3/TiO2 ratios. 764 

Fig. 9 PGE concentrations plotted versus La/Yb ratios. 765 
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Fig. 10 Comparison of the estimated parental melts for the Muli, DL, and RX picrites with primary 766 

melts of the Hawaiian picrites (Ireland et al., 2009), komatiites (Puchtel and Humayun, 2000), PUM 767 

(Becker et al., 2006), and partial melts (black dashed lines) of a hybrid source comprising 99.9% 768 

primitive mantle and 0.1% outer core. The compositions of primitive mantle and outer core, and the 769 

bulk partition coefficients (D values), are from Puchtel and Humayun (2000). The normalizing values 770 

are from McDonough and Sun, (1995). 771 

 772 
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