25 research outputs found

    Topiramate improves neurovascular function, epidermal nerve fiber morphology, and metabolism in patients with type 2 diabetes mellitus

    Get PDF
    Amanda L Boyd, Patricia M Barlow, Gary L Pittenger, Kathryn F Simmons, Aaron I VinikDepartment of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USAPurpose: To assess the effects of topiramate on C-fiber function, nerve fiber morphology, and metabolism (including insulin sensitivity, obesity, and dyslipidemia) in type 2 diabetes.Patients and methods: We conducted an 18-week, open-label trial treating patients with topiramate. Twenty subjects with type 2 diabetes and neuropathy (61.5 ± 1.29 years; 15 male, 5 female) were enrolled and completed the trial. Neuropathy was evaluated by total neuropathy scores, nerve conduction studies, quantitative sensory tests, laser Doppler skin blood flow, and intraepidermal nerve fibers in skin biopsies.Results: Topiramate treatment improved symptoms compatible with C-fiber dysfunction. Weight, blood pressure, and hemoglobin A1c also improved. Laser Doppler skin blood flow improved significantly after 12 weeks of treatment, but returned to baseline at 18 weeks. After 18 weeks of treatment there was a significant increase in intraepidermal nerve fiber length at the forearm, thigh, and proximal leg. Intraepidermal nerve fiber density was significantly increased by topiramate in the proximal leg.Conclusion: This study is the first to demonstrate that it is possible to induce skin intraepidermal nerve fiber regeneration accompanied by enhancement of neurovascular function, translating into improved symptoms as well as sensory nerve function. The simultaneous improvement of selective metabolic indices may play a role in this effect, but this remains to be determined.Keywords: diabetic neuropathy, skin blood flow, skin biopsy, diabete

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture

    Get PDF

    A Pentadecapeptide Fragment of Islet Neogenesis-Associated Protein Increases Beta-Cell Mass and Reverses Diabetes in C57BL/6J Mice

    No full text
    OBJECTIVE: The objective of this study was to demonstrate that islet neogenesis-associated protein (INGAP) peptide, a pentadecapeptide containing the biologically active portion of native INGAP, increases functional ÎČ-cell mass in normal animals and can be used therapeutically to reverse hyperglycemia in streptozotocin-induced diabetes. SUMMARY BACKGROUND DATA: INGAP, a 175 amino acid pancreatic acinar cell protein, has been suggested to be implicated in ÎČ-cell mass expansion. METHODS: In the first part of this study, normoglycemic hamsters were administered either 500 ÎŒg INGAP peptide (n = 30) or saline (n = 20) intraperitoneally daily and sacrificed after 10 or 30 days of treatment. Blood glucose and insulin levels were measured, and a histologic and morphometric analysis of the pancreas was performed to determine the effect of INGAP peptide on the endocrine pancreas. In the second part of the study, 6- to 8-week-old C57BL/6J mice (n = 8) were administered multiple low doses of the ÎČ-cell toxin streptozotocin (STZ) inducing insulitis and hyperglycemia. The mice were then injected with INGAP peptide (n = 4) or saline (n = 4) for 39 days and sacrificed at 48 days. Two additional groups of diabetic mice were administered either a peptide composed of a scrambled sequence of amino acids from INGAP peptide (n = 5) or exendin-4 (n = 5), an incretin that has been associated with amelioration of hyperglycemia. RESULTS: Islet cell neogenesis was stimulated in INGAP-treated hamsters by 10 days. At 30 days, the foci of new endocrine cells had the appearance of mature islets. There was a 75% increase in islet number, with normal circulating levels of blood glucose and insulin. Administration of INGAP peptide to diabetic mice reversed the diabetic state in all animals, and this was associated with increased expression of PDX-1 in duct cells and islet cell neogenesis with a reduction of insulitis in the new islets. Diabetic mice treated with exendin-4 or a scrambled INGAP peptide did not revert from hyperglycemia. CONCLUSION: Because there is a deficiency of ÎČ-cell mass in both type-1 and type-2 diabetes, INGAP peptide stimulation of fully functional neoislet differentiation may provide a novel approach for diabetes therapy

    Social Darwinism in Anglophone Academic Journals: A Contribution to the History of the Term

    Get PDF
    This essay is a partial history of the term ‘Social Darwinism’. Using large electronic databases, it is shown that the use of the term in leading Anglophone academic journals was rare up to the 1940s. Citations of the term were generally disapproving of the racist or imperialist ideologies with which it was associated. Neither Herbert Spencer nor William Graham Sumner were described as Social Darwinists in this early literature. Talcott Parsons (1932, 1934, 1937) extended the meaning of the term to describe any extensive use of ideas from biology in the social sciences. Subsequently, Richard Hofstadter (1944) gave the use of the term a huge boost, in the context of a global anti-fascist war.Peer reviewe
    corecore