28 research outputs found

    Impact of trailing wake drag on the statistical properties and dynamics of finite-sized particle in turbulence

    Full text link
    We study by means of an Eulerian-Lagrangian model the statistical properties of velocity and acceleration of a neutrally-buoyant finite-sized particle in a turbulent flow statistically homogeneous and isotropic. The particle equation of motion, beside added mass and steady Stokes drag, keeps into account the unsteady Stokes drag force - known as Basset-Boussinesq history force - and the non-Stokesian drag based on Schiller-Naumann parametrization, together with the finite-size Faxen corrections. We focus on the case of flow at low Taylor-Reynolds number, Re_lambda ~ 31, for which fully resolved numerical data which can be taken as a reference are available (Homann & Bec 651 81-91 J. Fluid Mech. (2010)). Remarkably, we show that while drag forces have always minor effects on the acceleration statistics, their role is important on the velocity behavior. We propose also that the scaling relations for the particle velocity variance as a function of its size, which have been first detected in fully resolved simulations, does not originate from inertial-scale properties of the background turbulent flow but it is likely to arise from the non-Stokesian component of the drag produced by the wake behind the particle. Furthermore, by means of comparison with fully resolved simulations, we show that the Faxen correction to the added mass has a dominant role in the particle acceleration statistics even for particle with size in the inertial range.Comment: 9 pages, 9 figure

    Force measurements on rising bubbles

    Get PDF
    The dynamics of millimeter sized air bubbles rising through still water are investigated using precise ultrasound velocity measurements combined with high speed video. From measurements of speed and three dimensional tra jectories we deduce the forces on the bubble which give rise to planar zigzag and spiraling motion

    An instrumented tracer for Lagrangian measurements in Rayleigh-B\'enard convection

    Get PDF
    We have developed novel instrumentation for making Lagrangian measurements of temperature in diverse fluid flows. A small neutrally buoyant capsule is equipped with on-board electronics which measure temperature and transmit the data via a wireless radio frequency link to a desktop computer. The device has 80 dB dynamic range, resolving milli-Kelvin changes in temperature with up to 100 ms sampling time. The capabilities of these "smart particles" are demonstrated in turbulent thermal convection in water. We measure temperature variations as the particle is advected by the convective motion, and analyse its statistics. Additional use of cameras allow us to track the particle position and to report here the first direct measurement of Lagrangian heat flux transfer in Rayleigh-B{\'e}nard convection. The device shows promise for opening new research in a broad variety of fluid systems.Comment: 14 page

    Large spheres motion in a non homogeneous turbulent flow

    Full text link
    We investigate the dynamics of very large particles freely advected in a turbulent von Karman flow. Contrary to other experiments for which the particle dynamics is generally studied near the geometrical center of the flow, we track the particles in the whole experiment volume. We observe a strong influence of the mean structure of the flow that generates an unexpected large-scale sampling effect for the larger particles studied; contrary to neutrally buoyant particles of smaller yet finite sizes that exhibit no preferential concentration in homogeneous and isotropic turbulence (Fiabane et al., Phys. Rev. E 86(3), 2012). We find that particles whose diameter approaches the flow integral length scale explore the von Karman flow non-uniformly, with a higher probability to move in the vicinity of two tori situated near the poloidal neutral lines. This preferential sampling is quite robust with respect to changes of any varied parameters: Reynolds number, particle density and particle surface roughness

    Do finite size neutrally buoyant particles cluster?

    Full text link
    We investigate the preferential concentration of particles which are neutrally buoyant but with a diameter significantly larger than the dissipation scale of the carrier flow. Such particles are known not to behave as flow tracers (Qureshi et al., Phys. Re. Lett. 2007) but whether they do cluster or not remains an open question. For this purpose, we take advantage of a new turbulence generating apparatus, the Lagrangian Exploration Module which produces homogeneous and isotropic turbulence in a closed water flow. The flow is seeded with neutrally buoyant particles with diameter 700\mum, corresponding to 4.4 to 17 times the turbulent dissipation scale when the rotation frequency of the impellers driving the flow goes from 2 Hz to 12 Hz, and spanning a range of Stokes numbers from 1.6 to 24.2. The spatial structuration of these inclusions is then investigated by a Voronoi tesselation analysis, as recently proposed by Monchaux et al. (Phys. Fluids 2010), from images of particle concentration field taken in a laser sheet at the center of the flow. No matter the rotating frequency and subsequently the Reynolds and Stokes numbers, the particles are found not to cluster. The Stokes number by itself is therefore shown to be an insufficient indicator of the clustering trend in particles laden flows

    Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxen forces

    Get PDF
    The dynamics of particles in turbulence when the particle-size is larger than the dissipative scale of the carrier flow is studied. Recent experiments have highlighted signatures of particles finiteness on their statistical properties, namely a decrease of their acceleration variance, an increase of correlation times -at increasing the particles size- and an independence of the probability density function of the acceleration once normalized to their variance. These effects are not captured by point particle models. By means of a detailed comparison between numerical simulations and experimental data, we show that a more accurate model is obtained once Faxen corrections are included.Comment: 10 pages, 4 figure

    Transition from hydrodynamic turbulence to magnetohydrodynamic turbulence in von Kármán flows

    Get PDF
    International audienceThe influence of an externally applied magnetic field on flow turbulence is investigated in liquid-gallium von-Ka ́rma ́n (VK) swirling flows. Time-resolved measurements of global variables (such as the flow power consumption) and local recordings of the induced magnetic field are made. From these measurements, an effective Reynolds number is introduced as Rmeff = Rm(1−α√N), so as to take into account the influence of the interaction parameter N. This effective magnetic Reynolds number leads to unified scalings for both global variables and the locally induced magnetic field. In addition, when the flow rotation axis is perpendicular to the direction of the applied magnetic field, significant flow and induced magnetic field fluctuations are observed at low interaction parameter values, but corresponding to an Alfve'n speed vA of the order of the fluid velocity fluctuations urms. This strong increase in the flow fluctuations is attributed to chaotic changes between hydrodynamic and magnetohydrodynamic velocity profiles

    Dynamo Regimes with a Nonhelical Forcing

    Get PDF
    A three-dimensional numerical computation of magnetohydrodynamic dynamo behavior is described. The dynamo is mechanically forced with a driving term of the Taylor-Green type. The magnetic field development is followed from negligibly small levels to saturated values that occur at magnetic energies comparable to the kinetic energies. Although there is locally a nonzero helicity density, there is no overall integrated helicity in the system. Persistent oscillations are observed in the saturated state for not-too-large mechanical Reynolds numbers, oscillations in which the kinetic and magnetic energies vary out of phase but with no reversal of the magnetic field. The flow pattern exhibits considerable geometrical structure in this regime. As the Reynolds number is increased, the oscillations disappear and the energies become more nearly stationary, but retain some unsystematically fluctuating turbulent time dependence. The regular geometrical structure of the fields gives way to a more spatially disordered distribution. The injection and dissipation scales are identified, and the different components of energy transfer in Fourier space are analyzed, particularly in the context of clarifying the role played by different flow scales in the amplification of the magnetic field. We observe that small and large scales interact and contribute to the dynamo process

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore