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The dynamics of particles in turbulence when the particle size is larger than the
dissipative scale of the carrier flow are studied. Recent experiments have highlighted
signatures of particles’ finiteness on their statistical properties, namely a decrease of
their acceleration variance, an increase of correlation times (at increasing the particles
size) and an independence of the probability density function of the acceleration once
normalized to their variance. These effects are not captured by point-particle models.
By means of a detailed comparison between numerical simulations and experimental
data, we show that a more accurate description is obtained once Faxén corrections
are included.

1. Introduction
The study of Lagrangian turbulence and of turbulent transport of material particles

has received growing interest in recent years (Toschi & Bodenschatz 2009). Modern
experimental techniques (based on synchronization of multiple fast cameras or
ultrasonic/laser Doppler velocimetry) allow nowadays to fully resolve particle tracks
in turbulent flows (La Porta et al. 2001; Mordant et al. 2001; Berg 2006; Xu et al.
2006; Volk et al. 2008b). These techniques have opened the way towards a systematic
study of the dynamics of material (or inertial) particles. When the particle density
is different from the one of the carrier fluid, a rich phenomenology emerges, such
as particle clustering and segregation (Squires & Eaton 1991; Calzavarini et al.
2008a ,b). Numerical studies have proven to be essential tools in complementing and
benchmarking experimental data of early days: investigations of fluid-tracer dynamics
have shown remarkable agreement with experiments (Mordant, Lévêque & Pinton
2004; Arneodo et al. 2008; Biferale et al. 2008). Lagrangian numerical studies through
direct numerical simulations (DNSs) of very small – computationally assumed to be
pointwise – particles have also shown encouraging consistency with experimental
measurements for inertial particles (Ayyalasomayajula et al. 2006; Bec et al. 2006;
Salazar et al. 2008; Volk et al. 2008a). However, in many situations the size of the
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particles is not small with respect to turbulence scales, in particular the dissipative
scale η. One example is the plankton which, while neutrally buoyant, cannot be
considered as a tracer because of its size in the order of few dissipative scales. Typical
marine and atmospherical environmental flows have η ∼ O(10) μm.

The statistics of particle accelerations, which directly reflect the action of
hydrodynamical forces, have been used to experimentally assess the statistical
signature of ‘large’ spherical particles, i.e. whose diameter d is larger than the smallest
turbulence scale η. Recent studies (Voth et al. 2002; Qureshi et al. 2007) and detailed
comparison between experiments and numerical simulations (Volk et al. 2008a) have
shown that finite-sized neutrally buoyant particles cannot be modelled as pointwise
in numerical studies. Features which have been clearly associated with a finite particle
size are as follows:

(i) For neutrally buoyant particles with d > η the acceleration variance a2 decreases
at increasing the particle size. A scaling law behaviour, a2 ∼ ε4/3d−2/3 (with ε being
the mean energy dissipation rate), has been suggested on the basis of Kolmogorov’s
(1941) turbulence phenomenology (Voth et al. 2002; Qureshi et al. 2007).

(ii) The normalized acceleration probability density function (p.d.f.) depends at
best very weakly on the particle diameter. Its shape can be fitted with stretched
exponential functions (see Voth et al. 2002; Qureshi et al. 2007).

(iii) The autocorrelation function of acceleration shows increased correlation time
with increasing particle size (Volk et al. 2008a).

While experimentally it is easier to study large (d > η) particles, theoretically (and
therefore computationally) this turns out to be a far more difficult task. Our aim
in this paper is to study the novel features associated with finite particle size in
developed turbulent flows while presenting an improved numerical model capable to
solve most of the discrepancies between experiments and simulations noticed in Volk
et al. (2008a). We show that qualitatively the new features are well captured by an
equation of motion which takes into account the effect of the non-uniformity of the
flow at the particle scale. To our knowledge the impact on acceleration statistics of
such forces, known since a long time as Faxén corrections (Faxén 1922), has never
been considered.

The paper is organized as follows: First we comment on the problems of obtaining
an equation of motion for finite-sized particles. We examine the approximation on
which point-particle (PP) equations rely and discuss two highly simplified models for
the dynamics of small (d < η) and finite-sized (d > η) particles. Section 3 gives the
numerical implementation of the proposed Faxén-corrected (FC) model. In § 4 we
show basic physical differences between the statistics of particle acceleration given by
numerics with or without Faxén corrections. Section 5 contains the comparison of the
model against experimental results, focusing on neutrally buoyant particles. Finally
in § 6 we summarize the results, critically review the model and discuss how it can be
improved.

2. Equation of motion for finite-sized particle in turbulence
Many studies on fine-particulate flows have based particle’s description on an

equation – referred to as Maxey–Riley–Gatignol – which is an exact derivation of the
forces on a particle in a non-uniform unsteady flow in the limit of vanishing Reynolds
numbers Rep = dvs/ν and ReS = d2Γ/ν, where vs is the slip particle velocity with
respect to the fluid and Γ = |∇u| the typical shear scale in the flow (Gatignol 1983;
Maxey & Riley 1983). In the net hydrodynamical force acting on a particle given by
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this equation one recognizes several contributions: the steady Stokes drag, the fluid
acceleration force (sum of the pressure gradient and the dissipative forces on the
fluid), the added mass, the buoyancy, the history Basset–Boussinesq force and Faxén
corrections. When the control parameters Rep and ReS become finite, the nonlinearity
of the flow dynamics in the vicinity of the particle must be taken into account (see
the review by Michaelides 1997). An expression for the added mass term which is
correct at any Rep value has been derived by Auton, Hunt & Prud’homme (1988). But
much more complicated is the situation for the other forces involved. The drag term
becomes Rep-dependent, and empirical expressions based on numerical computations
have been proposed (see Clift, Grace & E. 1978). Furthermore, a lift force appears
at finite values of Rep and ReS . This force is notably hard to model because of the
nonlinear combination of shear and vorticity, and approximate expressions based on
Saffman (small Rep) and Lighthill–Auton (large Rep) mechanisms are often used in
studies (see e.g. discussion on lift on bubbles by Magnaudet & Legendre 1998).

Theoretical and numerical studies of fine disperse multi-phase flows, which aim
at describing the behaviour of a large number of particles, have adopted simplified
models in which the sub-dominant terms in Maxey–Riley–Gatignol equation are
neglected (Balkovsky, Falkovich & Fouxon 2001; Bec 2005). A minimal model, used
to address particle Lagrangian dynamics in highly turbulent suspensions, takes into
account only a few ingredients: the Stokes drag, the Auton added mass and the fluid
acceleration term (Babiano et al. 2000; Calzavarini et al. 2008 b). This leads to

dv

dt
=

3 ρf

ρf + 2 ρp

(
Du
Dt

+
3ν

r2
(u − v)

)
, (2.1)

where ρf and ρp are respectively the fluid and the particle density, ν the fluid kinematic
viscosity and r = d/2 the radius of the particle, which is considered spherical; v denotes
the particle velocity, while u and Du/Dt are the fluid velocity and acceleration
evaluated in its centre of mass. A particle described by the above equation feels the
fluid fluctuations only in one point and therefore has no real spatial extension; we
may say its size r is essentially ‘virtual’. Equation (2.1) indeed contains only a time
scale, namely the particle relaxation time τp , which embodies the particle length scale
merely in combination with the kinematic viscosity of the flow and with the densities
coefficients, i.e. τp ≡ r2(ρf + 2 ρp)/(9νρf ). In practice, the drag term in (2.1) performs
a purely temporal filtering of the flow velocity fluctuations.

It is the role of Faxén terms to account for the non-uniformity of the flow at the
particle scale. Faxén forces represent necessary physical corrections when analysing
the behaviour of d > η particles in turbulence. The Faxén theorem for the drag force
on a moving sphere states the relation

fD = 6πνρf r

(
1

4πr2

∫
Sp

u(x) dS − v

)
= 6πνρf r(〈u〉Sp

− v), (2.2)

where the integral is over surface of the sphere and u(x) the non-homogeneous steady
motion of the fluid in the absence of the sphere. As later shown by Gatignol (1983),
Faxén force corrections via sphere volume averages should also be included on the
inertial hydrodynamic forces acting on the sphere. In particular the expression for the
fluid acceleration and added mass force becomes

fA =
4

3
πr3ρf

(〈
Du
Dt

〉
Vp

+
1

2

(〈
du
dt

〉
Vp

− dv

dt

))
, (2.3)
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where similarly as above 〈. . .〉Vp
denotes the volume average over the spherical particle.

Putting together the two force contributions of (2.2) and (2.3) into an equation of
motion for a sphere, (4/3)πr3ρp dv/dt = fD + fA, and keeping into account the
Auton added mass correction for finite ReP , i.e. du/dt → Du/Dt , we obtain the
phenomenological FC equation of motion:

dv

dt
=

3 ρf

ρf + 2 ρp

(〈
Du
dt

〉
Vp

+
3ν

r2
(〈u〉Sp

− v)

)
, (2.4)

which we propose as a first-order implementation of finite-sized correction for
particle dynamics. In the small particle limit, when r → 0 and u � v, corrections
can be approximated by Taylor expansion 〈u(x, t)〉Sp

� u + (r2/6)∇2u + O(r4);

〈Du(x, t)/Dt〉Vp
� (d/dt)(u + (r2/10)∇2u + O(r4)); therefore the first-order Faxén

correction accounts for the curvature of the unperturbed flow at the particle location.
In a turbulent flow the correction term becomes important when r > η, with a weak
Taylor–Reynolds number Reλ dependence. An order of magnitude estimate is as
follows: Recalling that the Taylor microscale is defined as the radius of curvature of
the velocity spatial correlation function at the origin, λ2 ∼ u2/|u∇2u|, one estimates
r2|∇2u|/|u| ∼ r2/λ2. Now by using the relation for the dissipative scale η ∼ λ/

√
Reλ,

we find r2|∇2u|/|u| ∼ r2/(η2Reλ). Faxén corrections are relevant when r � η
√

Reλ,
which corresponds to r � O(10) η in typical laboratory experiments (Reλ ∼
O(100)).

3. Numerical implementation of particle model and turbulence DNSs
We adopt here a further approximation which allows efficient numerical

computations of (2.4). Volume averages at particles’ positions are substituted by
local interpolations after filtering by a Gaussian envelope with standard deviation,
σ , proportional to the particle radius. Gaussian convolutions are then efficiently
computed in spectral space, and the Gaussian volume averaged field reads

〈ui〉G,Vσ
(x) = DFT−1

(N3)[G̃σ (k) ũi(k)], (3.1)

where DFT−1
(N3) denotes a discrete inverse Fourier transform on a grid N3; G̃σ (k) =

exp(−σ 2k2/2) is the Fourier transform of a unit volume Gaussian function of variance
σ ; and ũi(k) is the Fourier transform of a vector field (the material derivative of fluid
velocity in (2.4)). The surface average is obtained using the exact relation

〈u〉Sp
=

1

3r2

d

dr
(r3〈u〉Vp

), (3.2)

which leads to

〈ui〉G,Sσ
(x) = DFT−1

(N3)[S̃σ (k) ũi(k)], (3.3)

where S̃σ (k) = (1−(1/3)σ 2k2)e−(1/2)σ 2k2

. It can be shown that with the choice σ = r/
√

5,
the Gaussian convolution gives the right prefactors for the Faxén corrections in the
limit r → 0. Our simplified approach for the integration of (2.4) (FC model) allows
to track inertial particles in turbulent flows with minimal additional computational
costs as compared to (2.1) (PP model): the fluid acceleration and velocity fields are
filtered once for every particle radius size; then the averaged flow at the particle
positions are obtained through a trilinear interpolation. We track particles via (2.4)
in a stationary homogeneous isotropic flow, generated by large-scale volume forcing
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on a cubic domain. The Navier–Stokes (NS) equation is discretized on a regular
grid, integrated using a pseudo-spectral algorithm and advanced in time with a
second-order Adams–Bashford integrator. The spatial and temporal accuracy of
the integration and its validation have been carefully examined. To ensure a good
spatial resolution of NS equation we set η kmax � 1.7, where kmax is the largest
represented wave vector. For the time accuracy, controlled by the marching step δt ,
the Courant number is chosen to be small, Co ≡ urms kmax δt � 0.16. With this
choice τη � O(102) δt; therefore the Lagrangian equations for particles considered
in this study (all with response time τp � τη) can be safely integrated with the
same time stepping of the Eulerian field. We have checked the integration in simple
flows cases, e.g. a two-dimensional stationary cellular flow in which the filtered
particle dynamics can be derived analytically. The turbulent case instead has been
validated by a comparison with an independently developed code, implementing
the same equations for particles but with different forcing scheme, temporal
integration method (Verlet algorithm) and local interpolation procedure (tricubic
algorithm).

We have explored in a systematic way the two-dimensional parameter space
[ρp/ρf , d/η] in the range ρp/ρf ∈ [0.1, 10] and d/η ∈ [2, 50] for a turbulent flow at
Reλ = 180 (5123 collocation points). We tracked ∼ 2 × 106 particles for a total of
∼ 4 large-eddy turnover times in statistically stationary conditions. Lower-resolution
DNSs at Reλ = 75 (1283) have been used to explore a larger parameter space and
to study the differences between the PP model (2.1) and the FC model (2.4) in the
asymptote d → L (with L the turbulence integral scale).

4. Phenomenology of PP and FC models
We compare the statistics of acceleration of particles tracked via the PP and FC

equations. In the small particle limit (d/η → 0) the two model equations behave
the same way, and the particle trajectory becomes the one of a fluid tracer. The

ensemble-average acceleration variance reaches the value a2 → a2
f with the subscript

f labelling the fluid tracer acceleration. As the particle diameter is increased we
notice important differences between the two models. In the PP model the drag term

becomes negligible, and one gets a2 � β2a2
f , with β = 3ρf /(ρf +2ρp). In the FC model

the volume average of the fluid acceleration Du/Dt reduces progressively the particle
acceleration. This is illustrated in figure 1(a), where the particle acceleration variance

(normalized by β2a2
f ) is shown for three cases: neutral buoyant, heavy (ρp/ρf = 10)

and light (ρp/ρf = 0.1) particles. (The effect of gravity is here assumed negligible

compared to the one of turbulent fluctuations.) We note that the behaviour of a2 for
particles whose diameter is roughly larger than 10η seems to be identical apart from
the scaling factor β2.

Differences are also present in higher-order moments: for this we focus on the
flatness F (a) ≡ a4/(a2)2. In the large d limit PP model gives the rather unphysical
behaviour F (a) � F (af ); that is to say large particles, irrespectively of their density,
show the same level of intermittency as a fluid tracer. On the other hand the FC
equation gives asymptotically F (a) � 3, i.e. the Gaussian flatness value, meaning
that acceleration of large particles independent of their mass density value has lost
its intermittent character (see figure 1b). Furthermore, it is noticeable that above a
certain critical value of the diameter the flatness of heavy/neutral and light particles
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a2
/(
β

2
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2 f )

d/η

1 10 100

d/η

FC ρp/ρf = 10
PP
FC ρp/ρf = 1
PP
FC ρp/ρf = 0.1
PP

100

101

102

F
(a

)

FC ρp/ρf = 10
PP
FC ρp/ρf = 1
PP
FC ρp/ρf = 0.1
PP

Figure 1. (a) The acceleration variance a2 normalized by β2a2
f versus the particle diameter

as derived from the FC model (solid lines/symbols) and from PP the model system (dashed
lines/empty symbols). Density ratios shown are ρp/ρf = 0.1, 1, 10, i.e. heavy (�), neutral

(◦) and light (
) particles. (b) Same as above for the acceleration flatness F (a) = a4/(a2)2.
Horizontal lines shows the flatness of the fluid acceleration F (af ) and the flatness value for
Gaussian distribution F (a) = 3. Data from simulations at Reλ = 75.

reaches the same level: this suggests that also the p.d.f.s may have very similar
shapes.

5. Comparison with experiments for neutrally buoyant particles
We study now how the FC model compares with the experimental observations

listed in the introduction – recalling than none is captured by the PP model.

5.1. Acceleration variance

In figure 2 the behaviour of the one-component acceleration variance, normalized

by the Heisenberg–Yaglom scaling, a0 = a2
i ε

−3/2ν1/2, is displayed. Although this way
of normalizing the acceleration has a weak Reynolds number dependence (see Voth
et al. 2002; Bec et al. 2006) we notice a very similar behaviour as compared to the
experimental measurements at Reλ = 160 by Qureshi et al. (2007) and the Reλ = 970
experiments by Voth et al. (2002). In the inset of figure 2 the same quantity but with
a different normalization is shown. The particle acceleration variance there is divided

by the second moment of fluid tracer acceleration a2
f . The experimental data from

Voth et al. (2002) can also be rescaled in the same way by dividing a0 by the value for
the smallest considered particle (which has size d � 1.44η and essentially behaves as
a fluid tracer). This alternate way of looking at the data renormalizes the weak Reλ
dependence, providing a good agreement between the DNSs and experiments even
when comparing results with one order of magnitude difference in Reλ.

In a DNS one can estimate the relative weight of the terms contributing to the total
acceleration: the drag and fluid acceleration terms, respectively, aD = (〈u〉Sp

− v)/τp

and aA = β〈Du/Dt〉Vp
. It is important to note that in the case of neutrally buoyant

particles, one finds a2 � (aA)2 with per cent accuracy. It indicates that the observed
effect – decrease of particle acceleration variance for increasing particle diameter –
comes uniquely from volume averaging of fluid acceleration at the particle position.
The drag contribution is sub-leading at all d values (from few per cent up to 15 % of
total acceleration variance); it just contributes to compensate the aDaA correlations.
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1
/2

—

(Voth et al. 2002) EXP* Re
λ 

= 970

(Qureshi et al. 2007)  EXP Re
λ 

= 160

DNS Re
λ 
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DNS Re
λ 

= 75

d–2/3
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a2
/a

f2

1 10 100

d/η

1 10 100
d/η

Figure 2. One-component acceleration variance versus particle size. Acceleration is
normalized by the Heisenberg–Yaglom relation, while the particle size is normalized by the
dissipative scale. DNS results have uncertainty of the order of the symbol size. Experimental
data (EXP) are from Qureshi et al. (2007), with experimental measurement (EXP*) from (Voth

et al. 2002, figure 32)–particles with density contrast ρp/ρf = 1.06. Inset: a2/a2
f versus d/η

from the same DNS and experimental (EXP*) measurements.

Stated differently, one can say that the acceleration of a finite-sized neutrally buoyant
particle is essentially given by 〈Du/Dt〉Vp

= 〈∇ · τ + fe〉Vp
� (1/3r)〈τ · n〉Sp

, where
τ is the stress tensor, n a unit norm vector pointing outward the sphere and fe the
external large-scale forcing whose contribution 〈 fe〉Vp

� 0 is negligible at the particle
scale. One expects the situation to be different for particles whose densities do not
match that of the fluid.

Our simulations are consistent with the a0 ∼ d−2/3 scaling which has been proposed
on the basis of dimensional arguments rooted on K41 turbulence phenomenology
without special assumptions of particle dynamics (Voth et al. 2002; Qureshi et al.
2007); however at Reλ = 180 the scale separation is still too limited to observe a true
scaling range.

5.2. Acceleration p.d.f.

The second quantity under study is the acceleration p.d.f. Here, to cope with Reλ
effects, one compares only the two most similar data sets: the DNS at Reλ = 180
and the experiment at Reλ = 160 (Qureshi et al. 2007). Experiments have revealed

a universal behaviour for acceleration p.d.f. normalized by (a2
i )

1/2 in the size range
d = 12–25η. DNS instead shows a systematic difference in its trend: larger particles
have less intermittent acceleration statistics (see figure 3a). However, the shape of
the p.d.f. in the limit of large particles d � 30η shows a good similarity. To better
visualize differences, in figure 3(b), we show the flatness F (a) versus particle diameter
for DNSs and experiments. As already observed, the FC model leads to decreasing
intermittency for bigger neutral particles and in the asymptotic limit (d → L) to
Gaussian distribution; also acceleration flatness is an increasing function of Reλ.
The experiment of Qureshi and co-workers’ (2007) on the other hand showed a
d-independent behaviour around F (a) = 8.5. A further possible source of differences
can be connected to the variations in the large-scale properties of turbulent flows:
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Figure 3. (a) Comparison of p.d.f.s of acceleration normalized by its r.m.s. value, from Qureshi
et al. (2007), denoted by EXP, at Reλ = 160 and DNS at Reλ = 180. (b) One-component

acceleration flatness F (a) = a4
i /(a

2
i )

2 versus the normalized particle diameter d/η from the
same experiment and DNS at two different Reynolds numbers.

experimental tracks come from a decaying grid-generated turbulence; simulations
instead uses volume large-scale forced flow in a cubic domain without mean flow.

5.3. Acceleration time correlation

Finally, we consider the dynamics of the neutral particles. We study the normalized

one-component correlation function, Caa(τ ) ≡ ai(t)ai(t + τ )/a2
i . In Volk et al. (2008a)

it has been noted that PP model cannot account for the increasing autocorrelation
for larger particles. This is understood from (2.1): In the large d/η limit the drag
term is negligible, and the acceleration of a neutrally buoyant particle is dominated
by the inertial term Du/Dt . Therefore the time correlation of acceleration, Caa(τ ), is
related to the temporal correlation of Du/Dt along the particle trajectory. Because in
the large d limit v �= u (Babiano et al. 2000), one expects an acceleration correlation
time which is equal to or even shorter than the one of a fluid tracer. This is
confirmed by our numerics based on the PP equation (2.1). In the FC model instead,
the averaged quantity 〈Du/Dt〉Vp

dominates the particle’s acceleration and also its
time correlation Caa(τ ). In figure 4 we show that simulations based on (2.4) display
increasing correlation time for bigger particles, as observed in experiment (Volk et al.
(2008a) although at much larger Reλ values. A detailed comparison of the Caa(τ )
curves coming from DNSs with experiments by Qureshi and co-workers (2007) is
at present not possible, because of limited statistics. Therefore, we examine integral
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Figure 4. Autocorrelation function of acceleration Caa(τ ) for neutral particles (ρp = ρf ), with
different sizes d = 2η, 8η, 16η, 32η and a tracer particle; zoom for τ/τη < 5; asymptotically

all the curves go to zero. Inset: integral acceleration time TI =
∫ T0

0 Caa(τ ) dτ , with T0 the
zero-crossing time, Caa(T0) = 0, versus particle diameter. Symbols: (�, ◦) DNS at Reλ =
(75, 180); (+) data from experiments at Reλ = 160.

quantities such as an integral acceleration time TI . Since by kinematic constraint the
time integral of Caa(τ ) for a small tracer is zero, we define TI as the integral over
time of the positive part of Caa(τ ); this choice proves to be stable in the experiments
and weakly dependent on the unavoidable (Gaussian) smoothing of noisy data sets
(see Volk et al. 2008b). The result of this analysis is reported in figure 4 (inset). The
order of magnitude of TI/τη, which is very near unity, as well its increasing trend
with d qualitatively confirm the prediction of the FC model at similar Reynolds
number. Using DNS results, it is also interesting to note that this time decreases with
increasing Reynolds number.

6. Discussion of results and conclusions
We have investigated the origin of several experimental observations concerning

neutrally buoyant finite-sized particle acceleration in turbulent flows and shown the
relevance of Faxén corrections. Faxén terms account for inhomogeneities in the fluid
flow at the spatial extension of the particle. They act as spatial coarse graining
of the surrounding turbulent flow, in contrast with the drag term which performs
a temporal filtering. Numerically, the spatial average is efficiently implemented via
Gaussian filtering in spectral space. Comparing with experimental measurements, the
main achievements of the FC model are (i) prediction of the reduction of acceleration
fluctuations at increasing the particle size and (ii) prediction of the increasing of
acceleration time correlation at increasing the particle size. Both effects originate
from the volume average of the fluid acceleration term or in other word from the
surface average of the stress tensor of the unperturbed flow. While the FC model
gives the correct trend, it does not solve the puzzling point of invariant p.d.f. with
particle size, observed by Qureshi et al. (2007).

The FC model improves the statistical description of realistic turbulent particle
suspensions. We emphasize that none of the observed trends in the acceleration of
neutrally buoyant particles can be captured by previous purely local models, as e.g.
the PP one in (2.1). Faxén corrections are of special relevance in the case of neutrally
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buoyant particles, because it is the case for which the slip velocity (vs ≡ |v − 〈u〉Sp
|)

is the smallest (as compared to ρp �= ρf particles) and therefore in which drag,
history and lift have the least impact on the net force. In our case we observe that
when increasing the size of particles, the p.d.f.s of slip velocity normalized by the fluid
velocity root mean square (r.m.s.) value (vs/urms) change from a sharp delta-like shape
(for tracers) to larger distributions approaching a Gaussian (for large particles). A
size-dependent slip velocity for neutrally buoyant particles in chaotic flows has been
reported recently in Ouellette, O’Malley & Gollub (2008): Faxén corrections to the
added mass should be significant in that case too. We also observe that the particle
Reynolds number Rep measured in our simulations reaches values O(100); hence a
more accurate description of the drag force on a sphere in a turbulent environment
(see for instance Bagchi & Balachandar 2003) may be important particularly for a
faithful reproduction of the far tails of the acceleration p.d.f.

The authors acknowledge the Grenoble team (N. M. Qureshi, C. Baudet, A.
Cartellier and Y. Gagne) for generously sharing their experimental data measurements
and J. Bec for useful discussions. Numerics have been performed at SARA (The
Netherlands), CINECA (Italy) and PSMN at ENS-Lyon (France). Numerical raw
data on FC particles are freely available on the iCFDdatabase (http://cfd.cineca.it)
kindly hosted by CINECA (Italy).
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