106 research outputs found

    Fire management strategies to maintain species population processes in a fragmented landscape of fire-interval extremes

    Get PDF
    Changed fire regimes have led to declines of fire-regime- adapted species and loss of biodiversity globally. Fire affects population processes of growth, reproduction, and dispersal in different ways, but there is little guidance about the best fire regime(s) to maintain species population processes in fire-prone ecosystems. We use a process-based approach to determine the best range of fire intervals for keystone plant species in a highly modified Mediterranean ecosystem in southwestern Australia where current fire regimes vary. In highly fragmented areas, fires are few due to limited ignitions and active suppression of wildfire on private land, while in highly connected protected areas fires are frequent and extensive. Using matrix population models, we predict population growth of seven Banksia species under different environmental conditions and patch connectivity, and evaluate the sensitivity of species survival to different fire management strategies and burning intervals. We discover that contrasting, complementary patterns of species life-histories with time since fire result in no single best fire regime. All strategies result in the local patch extinction of at least one species. A small number of burning strategies secure complementary species sets depending on connectivity and post-fire growing conditions. A strategy of no fire always leads to fewer species persisting than prescribed fire or random wildfire, while too-frequent or too-rare burning regimes lead to the possible local extinction of all species. In low landscape connectivity, we find a smaller range of suitable fire intervals, and strategies of prescribed or random burning result in a lower number of species with positive growth rates after 100 years on average compared with burning high connectivity patches. Prescribed fire may reduce or increase extinction risk when applied in combination with wildfire depending on patch connectivity. Poor growing conditions result in a significantly reduced number of species exhibiting positive growth rates after 100 years of management. By exploring the consequences of managing fire, we are able to identify which species are likely to disappear under a given fire regime. Identifying the appropriate complementarity of fire intervals, and their species-specific as well as community-level consequences, is crucial to reduce local extinctions of species in fragmented fire-prone landscapes

    Forty years of carabid beetle research in Europe - from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation

    Get PDF
    Volume: 100Start Page: 55End Page: 14

    Modelling the invasion history of Sinanodonta woodiana in Europe: tracking the routes of a sedentary aquatic invader with mobile parasitic larvae

    Get PDF
    Understanding the invasive potential of species outside their native range is one of the most pressing questions in applied evolutionary and ecological research. Admixture of genotypes of invasive species from multiple sources has been implicated in successful invasions, by generating novel genetic combinations that facilitate rapid adaptation to new environments. Alternatively, adaptive evolution on standing genetic variation, exposed by phenotypic plasticity and selected by genetic accommodation, can facilitate invasion success. We investigated the population genetic structure of an Asian freshwater mussel with a parasitic dispersal stage, Sinanodonta woodiana, which has been present in Europe since 1979 but which has expanded rapidly in the last decade. Data from a mitochondrial marker and nuclear microsatellites have suggested that all European populations of S. woodiana originate from the River Yangtze basin in China. Only a single haplotype was detected in Europe, in contrast to substantial mitochondrial diversity in native Asian populations. Analysis of microsatellite markers indicated intensive gene flow and confirmed a lower genetic diversity of European populations compared to those from the Yangtze basin, though that difference was not large. Using an Approximate Bayesian Modelling approach, we identified two areas as the probable source of the spread of S. woodiana in Europe, which matched historical records for its establishment. Their populations originated from a single colonization event. Our data do not support alternative explanations for the rapid recent spread of S. woodiana; recent arrival of a novel (cold‐tolerant) genotype or continuous propagule pressure. Instead, in situ adaptation, facilitated by repeated admixture, appears to drive the ongoing expansion of S. woodiana. We discuss management consequences of our results

    Some fundamental elements for studying social-ecological co-existence in forest common pool resources

    No full text
    For millennia, societies have tried to find ways to sustain people’s livelihoods by setting rules to equitably and sustainably access, harvest and manage common pools of resources (CPR) that are productive and rich in species. But what are the elements that explain historical successes and failures? Elinor Ostrom suggested that it depends on at least eight axiomatic principles of good governance, whereas empirical results suggest that these principles are not sufficient to describe them, especially when applied to CPRs that possess great social and ecological diversity. The aim of this article is to explore the behavior of a mathematical model of multi-species forest dynamics that respects the foundations of ecology and Ostrom’s governance theory, in order to detect possible constraints inherent to the functioning of these complex systems. The model reveals that fundamental structural laws of compatibilities between species life-history traits are indeed constraining the level of co-existence (average and variance) between a diversity of co-vulnerable timber resource users (RU) and of competing tree species. These structural constraints can also lead to unexpected outcomes. For instance in wetter forest commons, opening up the access to as many diverse RUs as there are competing tree species, produces a diversity of independently-controlled disturbances on species, collectively improving the chances of coexistence between species with different life-history traits. Similar benefits are observed on forest carbon and on profits from timber harvesting. However in drier forest commons, the same benefits cannot be observed, as predicted on the basis of the constraining laws. The results show that the successes and failures of certain management strategies can be reasonably explained by simple mechanistic theories from ecology and the social-ecological sciences, which are themselves constrained by fundamental ecological invariants. If corroborated, the results could be used, in conjunction with Ostrom’s CPR theory, to understand and solve various human-nature coexistence dilemmas in complex social-ecological systems

    Data from: Population-level consequences of herbivory, changing climate and source-sink dynamics on a long-lived invasive shrub

    No full text
    Long-lived plant species are highly valued environmentally, economically, and socially, but can also cause substantial harm as invaders. Realistic demographic predictions can guide management decisions, and are particularly valuable for long-lived species where population response times can be long. Long-lived species are also challenging, given population dynamics can be affected by factors as diverse as herbivory, climate, and dispersal. We developed a matrix model to evaluate the effects of herbivory by a leaf-feeding biological control agent released in Australia against a long-lived invasive shrub (mesquite, Leguminoseae: Prosopis spp.). The stage-structured, density-dependent model used an annual time step and 10 climatically diverse years of field data. Mesquite population demography is sensitive to source–sink dynamics as most seeds are consumed and redistributed spatially by livestock. In addition, individual mesquite plants, because they are long lived, experience natural climate variation that cycles over decadal scales, as well as anthropogenic climate change. The model therefore explicitly considered the effects of both net dispersal and climate variation. Herbivory strongly regulated mesquite populations through reduced growth and fertility, but additional mortality of older plants will be required to reach management goals within a reasonable time frame. Growth and survival of seeds and seedlings were correlated with daily soil moisture. As a result, population dynamics were sensitive to rainfall scenario, but population response times were typically slow (20–800 years to reach equilibrium or extinction) due to adult longevity. Equilibrium population densities were expected to remain 5% higher, and be more dynamic, if historical multi-decadal climate patterns persist, the effect being dampened by herbivory suppressing seed production irrespective of preceding rainfall. Dense infestations were unlikely to form under a drier climate, and required net dispersal under the current climate. Seed input wasn't required to form dense infestations under a wetter climate. Each factor we considered (ongoing herbivory, changing climate, and source–sink dynamics) has a strong bearing on how this invasive species should be managed, highlighting the need for considering both ecological context (in this case, source–sink dynamics) and the effect of climate variability at relevant temporal scales (daily, multi-decadal, and anthropogenic) when deriving management recommendations for long-lived species
    • 

    corecore