1,517 research outputs found

    Pre-posterior analysis of inspections incorporating degradation of concrete structures

    Get PDF
    The framework of pre-posterior decision analysis has a large potential as a decision support tool in structural engineering. It seems ideally suited to tackle problems related to determining the value of Structural Health Monitoring and is commonly applied in inspection and maintenance planning. However, the application of this methodology for integrated life-cycle cost decision making related to monitoring of time-dependent and spatial degradation phenomena in concrete structures, needs further investigation. In this work, the timedependent and spatial degradation phenomena will be coupled to the pre-posterior decision making approach and applied on concrete beams under bending, subjected to corrosion of the reinforcement. A framework is set up to determine the value of information of inspections enabling adequate decision-making. The methodology incorporates Bayesian updating based on the uncertain inspection outcomes. The framework will be illustrated by application on a simply supported reinforced concrete beam

    Wind-structure interaction simulations for the prediction of ovalling vibrations in silo groups

    Get PDF
    Wind-induced ovalling vibrations were observed during a storm in October 2002 on several empty silos of a closely spaced group consisting of 8 by 5 thin-walled silos in the port of Antwerp (Belgium). The purpose of the present research is to investigate if such ovalling vibrations can be predicted by means of numerical simulations. More specifically, the necessity of performing computationally demanding wind-structure interaction (WSI) simulations is assessed. For this purpose, both one-way and two-way coupled simulations are performed. Before considering the entire silo group, a single silo in crosswind is simulated. The simulation results are in reasonably good agreement with observations and WSI simulations seem to be required for a correct prediction of the observed ovalling vibrations

    PACS and SPIRE range spectroscopy of cool, evolved stars

    Get PDF
    Context: At the end of their lives AGB stars are prolific producers of dust and gas. The details of this mass-loss process are still not understood very well. Herschel PACS and SPIRE spectra offer a unique way of investigating properties of AGB stars in general and the mass-loss process in particular. Methods: The HIPE software with the latest calibration is used to process the available PACS and SPIRE spectra of 40 evolved stars. The spectra are convolved with the response curves of the PACS and SPIRE bolometers and compared to the fluxes measured in imaging data of these sources. Custom software is used to identify lines in the spectra, and to determine the central wavelengths and line intensities. Standard molecular line databases are used to associate the observed lines. Because of the limited spectral resolution of the spectrometers several known lines are typically potential counterparts to any observed line. To help identifications the relative contributions in line intensity of the potential counterpart lines are listed for three characteristic temperatures based on LTE calculations and assuming optically thin emission. Result: The following data products are released: the reduced spectra, the lines that are measured in the spectra with wavelength, intensity, potential identifications, and the continuum spectra, i.e. the full spectra with all identified lines removed. As simple examples of how this data can be used in future studies we have fitted the continuum spectra with three power laws and find that the few OH/IR stars seem to have significantly steeper slopes than the other oxygen- and carbon-rich objects in the sample. As another example we constructed rotational diagrams for CO and fitted a two-component model to derive rotational temperatures.Comment: A&A accepte

    Simplified models of stellar wind anatomy for interpreting high-resolution data: Analytical approach to embedded spiral geometries

    Get PDF
    Recent high-resolution observations have shown stellar winds to harbour complexities which strongly deviate from spherical symmetry, generally assumed as standard wind model. One such morphology is the archimedean spiral, generally believed to be formed by binary interactions, which has been directly observed in multiple sources. We seek to investigate the manifestation in the observables of spiral structures embedded in the spherical outflows of cool stars. We aim to provide an intuitive bedrock with which upcoming ALMA data can be compared and interpreted. By means of an extended parameter study, we model rotational CO emission from the stellar outflow of asymptotic giant branch stars. To this end, we develop a simplified analytical parametrised description of a 3D spiral structure. This model is embedded into a spherical wind, and fed into the 3D radiative transfer code LIME, which produces 3D intensity maps throughout velocity space. Subsequently, we investigate the spectral signature of rotational transitions of CO of the models, as well as the spatial aspect of this emission by means of wide-slit PV diagrams. Additionally, the potential for misinterpretation of the 3D data in a 1D context is quantified. Finally, we simulate ALMA observations to explore the impact of interefrometric noise and artifacts on the emission signatures. The spectral signatures of the CO rotational transition v=0 J=3-2 are very efficient at concealing the dual nature of the outflow. Only a select few parameter combinations allow for the spectral lines to disclose the presence of the spiral structure. The inability to disentangle the spiral from the spherical signal can result in an incorrect interpretation in a 1D context. Consequently, erroneous mass loss rates would be calculated..
    • …
    corecore