219 research outputs found

    Cranberries Of Wisconsin: Analyzing The Economic Impact

    Get PDF
    Once mainly known as a menu item in American and Canadian Thanksgiving dinners, cranberries have branched out to become a major commercial crop in the United States. Cranberries, along with blueberries and concord grapes, are the only native fruits grown commercially in the United States. Wisconsin leads the United States in cranberry production. The growth of this industry has led to a net economic gain to the community and region. This paper initiates the discussion of the cranberry industry to the State of Wisconsin’s economy; adding it as a topic in the field of economic development. This paper uses "input output analysis" in an effort to estimate the economic value of this crop

    An examination of Crassostrea virginica nuclear DNA variation along the North Carolina coast

    Get PDF
    Inhabiting coastal waters from eastern Canada to the Gulf of Mexico, the eastern oyster is subjected to a wide range of temperature and salinity regimes, thus providing an interesting opportunity to study population structure. Prior studies have examined phenotypic as well as DNA differences along this range. A previous mtDNA population survey of Crassostrea virginica within Pamlico Sound utilizing a single 16s polymorphism diagnostic for North Atlantic / South Atlantic haplotypes revealed an ~110 km cline along the North Carolina coast. Using 4 microsatellite loci, 3 SNPs and 1 scnDNA RFLP, I have surveyed eight oyster populations within and outside the Pamlico Sound in an effort to corroborate the population structure found in the mitochondrial genome. Three microsatellite loci were out of HWE across populations vs. only 1 population for one SNP loci, and it seems likely that those microsatellite loci were plagued with null alleles. Microsatellite exact tests show some significant differences within the Pamlico Sound, mostly in comparisons involving the Stumpy Point population. A combined SNP/RFLP analysis did reveal significant differences among populations, though most of this can be accounted for by inclusion of a population from Maryland. The clinal structure seen in the mitochondrial genome is not reflected in the nuclear genome within the Pamlico Sound

    Rotation Grazing Demonstrations With Beef Cows on HEL - Adams County Conservation Reserve Program (CRP) Project

    Get PDF
    Two grazing systems were demonstrated on Conservation Reserve Program (CRP) land in southwestern Iowa near Corning in the summers of 1991, 1992, 1993, 1994, and 1995. This report summarizes the 1995 data and compares them to results from the four previous years. The systems, a 13-paddock intensive-rotational grazing system and a 4-paddock more traditional rotation, both established in 1991, are aimed at showing economically sustainable grass alternatives for steeply sloping (9-14% slope), highly erodible land (HEL) once the 10-year CRP ends. In a 147-day grazing season in 1995, nursing crossbred calves with no creep gained 2.36 pounds and 2.38 pounds per day on the 13- and 4-paddock systems, respectively. The rotations were stocked at 1.65 acres per cow-calf pair on the 13-paddock system and 1.72 acres per pair on the 4-paddock system. This produced 210.2 pounds of calf gain per acre on the 13-paddock system and 203.2 pounds of calf gain per acre on the 4- paddock system.. Similar calves gained 2.37 pounds and 2.50 pounds per day for 155 days, yielding a total gain per acre of 222.7 pounds on the 13-paddock system and 224.9 pounds on the 4-paddock system in 1994. Results for 1992 remain the highest from both systems in the five years of grazing, with calf gain per head per day at 2.45 for 155 days netting 241.9 pounds per acre on the 13- paddock system and calf gain per head per day at 2.38 for 154 days on the 4-paddock system yielding 263.6 pounds per acre. Cows maintained both their weight and condition scores in both systems again in 1995. A third system, the 18-paddock intensive-rotational grazing system, was stocked with stocker steers in 1995, and the results are reported in a second article in the 1996 ISU Beef Research Report entitled “Intensive- Rotational Grazing Steers on Highly Erodible Land at the Adams County CRP Project.” Concerning grazing management, paddocks were grazed four, five, or six times in the 13-paddock intensive- rotational grazing system during the 147-day grazing season of 1995. This number of times grazed per paddock was nearly equal to times grazed per paddock in 1994. However, several paddocks were subdivided temporarily to equalize paddock size and increase grazing uniformity. This increased the total number of cattle moves in the 13-paddock system from 78 in 1994 to 109 in 1995. The average length of stay on each paddock or subdivision of a paddock per grazing time was 1 to 2.2 days. This was less than in any of the other four grazing years in this project. The principle of not grazing more than half the standing forage during any one grazing period was closely followed in 1995. All paddocks in the 13-paddock system were also rested approximately the recommended 30 days between each grazing cycle in 1995

    Cytomegalovirus antibody and vascular pathology in renal transplant recipients

    Get PDF
    Cytomegalovirus (CMV) has been linked with vascular pathology and is a common complication of renal transplantation. We addressed whether CMV seropositivity influences vascular pathology several years after transplant. Levels of CMV antibody increased with age, were higher in transplant recipients than healthy controls (P < 0.001), and correlated with vascular endothelial function measured by flow mediated-dilation of the brachial artery (FMD). However, the optimal general linear model predicting FMD included CMV seropositivity as a marginal effect (P = 0.068), with age (P = 0.013), gender (P < 0.0001), and transplantation (P < 0.0001). Other measures of the burden of CMV are being tested as CMV prophylaxis is feasible as an approach to reduce vascular disease

    Spatial Patterns in Herbivory on a Coral Reef Are Influenced by Structural Complexity but Not by Algal Traits

    Get PDF
    Background: Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs. Methodology and Principal Findings: We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae. Significance: This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the ability of coral reefs to reorganise and retain ecosystem functions following disturbance, structural complexity emerges as a critical feature that is essential for the healthy functioning of these ecosystems

    Interacting with Fictions:The Role of Pretend Play in Theory of Mind Acquisition

    Get PDF
    Pretend play is generally considered to be a developmental landmark in Theory of Mind acquisition. The aim of the present paper is to offer a new account of the role of pretend play in Theory of Mind development. To this end I combine Hutto and Gallagher’s account of social cognition development with Matravers’ recent argument that the cognitive processes involved in engagement with narratives are neutral regarding fictionality. The key contribution of my account is an analysis of pretend play as interaction with fictions. I argue that my account offers a better explanation of existing empirical data on the development of children’s pretend play and Theory of Mind than the competing theories from Leslie, Perner and Harris

    Medulloblastoma Exome Sequencing Uncovers Subtype-Specific Somatic Mutations

    Get PDF
    Medulloblastomas are the most common malignant brain tumors in children1. Identifying and understanding the genetic events that drive these tumors is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma based on transcriptional and copy number profiles2–5. Here, we utilized whole exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas exhibit low mutation rates consistent with other pediatric tumors, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR, and LDB1, novel findings in medulloblastoma. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant but not wild type beta-catenin. Together, our study reveals the alteration of Wnt, Hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic beta-catenin signaling in medulloblastoma

    Current pretreatment technologies for the development of cellulosic ethanol and biorefineries

    Get PDF
    Lignocellulosic materials, such as forest, agriculture, and agroindustrial residues, are among the most important resources for biorefineries to provide fuels, chemicals, and materials in such a way to substitute for, at least in part, the role of petrochemistry in modern society. Most of these sustainable biorefinery products can be produced from plant polysaccharides (glucans, hemicelluloses, starch, and pectic materials) and lignin. In this scenario, cellulosic ethanol has been considered for decades as one of the most promising alternatives to mitigate fossil fuel dependence and carbon dioxide accumulation in the atmosphere. However, a pretreatment method is required to overcome the physical and chemical barriers that exist in the lignin–carbohydrate composite and to render most, if not all, of the plant cell wall components easily available for conversion into valuable products, including the fuel ethanol. Hence, pretreatment is a key step for an economically viable biorefinery. Successful pretreatment method must lead to partial or total separation of the lignocellulosic components, increasing the accessibility of holocellulose to enzymatic hydrolysis with the least inhibitory compounds being released for subsequent steps of enzymatic hydrolysis and fermentation. Each pretreatment technology has a different specificity against both carbohydrates and lignin and may or may not be efficient for different types of biomasses. Furthermore, it is also desirable to develop pretreatment methods with chemicals that are greener and effluent streams that have a lower impact on the environment. This paper provides an overview of the most important pretreatment methods available, including those that are based on the use of green solvents (supercritical fluids and ionic liquids)

    Movements of marine fish and decapod crustaceans: Process, theory and application

    Get PDF
    Many marine species have a multi-phase ontogeny, with each phase usually associated with a spatially and temporally discrete set of movements. For many fish and decapod crustaceans that live inshore, a tri-phasic life cycle is widespread, involving: (1) the movement of planktonic eggs and larvae to nursery areas; (2) a range of routine shelter and foraging movements that maintain a home range; and (3) spawning migrations away from the home range to close the life cycle. Additional complexity is found in migrations that are not for the purpose of spawning and movements that result in a relocation of the home range of an individual that cannot be defined as an ontogenetic shift. Tracking and tagging studies confirm that life cycle movements occur across a wide range of spatial and temporal scales. This dynamic multi-scale complexity presents a significant problem in selecting appropriate scales for studying highly mobile marine animals. We address this problem by first comprehensively reviewing the movement patterns of fish and decapod crustaceans that use inshore areas and present a synthesis of life cycle strategies, together with five categories of movement. We then examine the scale-related limitations of traditional approaches to studies of animal-environment relationships. We demonstrate that studies of marine animals have rarely been undertaken at scales appropriate to the way animals use their environment and argue that future studies must incorporate animal movement into the design of sampling strategies. A major limitation of many studies is that they have focused on: (1) a single scale for animals that respond to their environment at multiple scales or (2) a single habitat type for animals that use multiple habitat types. We develop a hierarchical conceptual framework that deals with the problem of scale and environmental heterogeneity and we offer a new definition of 'habitat' from an organism-based perspective. To demonstrate that the conceptual framework can be applied, we explore the range of tools that are currently available for both measuring animal movement patterns and for mapping and quantifying marine environments at multiple scales. The application of a hierarchical approach, together with the coordinated integration of spatial technologies offers an unprecedented opportunity for researchers to tackle a range of animal-environment questions for highly mobile marine animals. Without scale-explicit information on animal movements many marine conservation and resource management strategies are less likely to achieve their primary objectives

    A framework for human microbiome research

    Get PDF
    A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies
    • 

    corecore