205 research outputs found

    Impact of ultraviolet radiation on marine crustacean zooplankton and ichthyoplankton: a synthesis of results from the estuary and Gulf of St. Lawrence, Canada

    Get PDF
    The objectives of the research program reported upon here were (1) to measure ambient levels of UV radiation and determine whichvariables most strongly affected its attenuation in the waters of the estuary and Gulf of St. Lawrence, Canada; and (2) to investigate the potential direct impacts of W radiation on species of crustacean zooplankton and fish whose early life stages are planktonic. In this geographic region, productivity-determining biophysical interactions occur in the upper 0 to 30 m of the water column. Measurements of the diffuse attenuation coefficients for ultraviolet-B radiation (W-B, 280 to 320 nm) at various locations in this region indicated maximum 10% depths (the depth to which 10% of the surface energy penetrates at a given wavelength) of 3 to 4 m at a wavelength of 310 nm. Organisms residing in this layer-including the eggs and larvae of Calanus finmarchicus and Atlantic cod Gadus morhua-are exposed to biologically damaging levels of W radiation. As a result of these physical and biological characteristics, this system offered a relevant opportunity to assess the impacts of UV on subarctic marine ecosystems. Eggs of C. finmarchicus were incubated under the sun, with and without the W-B and/or UV-A (320 to 400 nm) wavebands. W-exposed eggs exhibited low percent hatchmg compared to those protected from W : W radiation had a strong negative impact on C. finmarchicus eggs. Further, percent hatching in W-B-exposed eggs was not significantly lower than that in eggs exposed to UV-A only: under natural sunlight, UV-A radiation appeared to be more detrimental to C. finmarchicus embryos than was UV-B. In analogous experiments with Atlantic cod eggs, exposure to UV-B produced a significant negative effect. However, UV-A had no negative effect on cod eggs. Additional experiments using a solar simulator (SS) revealed high wavelength-dependent mortality in both C. finmarchicus and cod embryos exposed to UV. The strongest effects occurred under exposures to wavelengths below 312 nm. At the shorter wavelengths (<305 nm) UV-B-induced mortality was strongly dose-dependent, but (for both C. finmarchicus and cod) not significantly influenced by dose-rate. Thus, at least within the limits of the exposures under which the biological weighting functions (BWFs) were generated, reciprocity held. The BWFs derived for UV-B-induced mortality in C. finmarchicus and cod eggs were similar in shape to the action spectrum for UV-B effects on naked DNA. Further, the wavelengthdependence of DNA damage was similar to that for the mortality effect. These observations suggest that W-induced mortality in C. finmarchicus and cod eggs is a direct result of DNA damage. There was no evidence of a detrimental effect of UV-A radiation in these SS-derived results. A mathematical model that includes the BWFs, vertical mixing of eggs, meteorological and hydrographic conditions, and ozone depletion, indicates that W-induced mortality in the C. finmarchicus egg population could be as high as 32.5 %, while the impact on the cod egg population was no more than 1.2%. Variability in cloud cover, water transparency (and the variables that affect it), and vertical distribution and displacement of planktonic organisms within the mixed layer can all have a greater effect on the flux of UV-B radiation to which they are exposed than will ozone layer depletion at these latitudes. Our observations indicate that C, finmarchicus and cod eggs present in the first meter of the water column (likely only a small percentage of the total egg populations) are susceptible to W radiation. However, although exposure to UV can negatively impact crustacean zooplankton and ichthyoplankton populations, these direct effects are likely minimal within the context of all the other environmental factors that produce the very high levels of mortality typically observed in their planktonic early life stages. The impact of indnect effects-which may well be of much greater import-has yet to be evaluated

    Efficacy and safety of givosiran for acute hepatic porphyria: 24-month interim analysis of the randomized phase 3 ENVISION study

    Get PDF
    Background &amp; Aims Upregulation of hepatic delta-aminolevulinic acid synthase 1 with accumulation of potentially toxic heme precursors delta-aminolevulinic acid and porphobilinogen is fundamental to the pathogenesis of acute hepatic porphyria. Aims: evaluate long-term efficacy and safety of givosiran in acute hepatic porphyria. Methods Interim analysis of ongoing ENVISION study (NCT03338816), after all active patients completed their Month 24 visit. Patients with acute hepatic porphyria (≥12 years) with recurrent attacks received givosiran (2.5 mg/kg monthly) (n=48) or placebo (n=46) for 6 months (double-blind period); 93 received givosiran (2.5 mg or 1.25 mg/kg monthly) in the open-label extension (continuous givosiran, n=47/48; placebo crossover, n=46/46). Endpoints included annualized attack rate, urinary delta-aminolevulinic acid and porphobilinogen levels, hemin use, daily worst pain, quality of life, and adverse events. Results Patients receiving continuous givosiran had sustained annualized attack rate reduction (median 1.0 in double-blind period, 0.0 in open-label extension); in placebo crossover patients, median annualized attack rate decreased from 10.7 to 1.4. Median annualized days of hemin use were 0.0 (double-blind period) and 0.0 (open-label extension) for continuous givosiran patients and reduced from 14.98 to 0.71 for placebo crossover patients. Long-term givosiran led to sustained lowering of delta-aminolevulinic acid and porphobilinogen and improvements in daily worst pain and quality of life. Safety findings were consistent with the double-blind period. Conclusions Long-term givosiran has an acceptable safety profile and significantly benefits acute hepatic porphyria patients with recurrent attacks by reducing attack frequency, hemin use, and severity of daily worst pain while improving quality of life

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Genetic correlations and genome-wide associations of cortical structure in general population samples of 22824 adults

    Get PDF
    Cortical thickness, surface area and volumes vary with age and cognitive function, and in neurological and psychiatric diseases. Here we report heritability, genetic correlations and genome-wide associations of these cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprises 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank. We identify genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There is enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging

    A conservation roadmap for the subterranean biome

    Get PDF
    The 15th UN Convention on Biological Diversity (CBD) (COP15) will be held in Kunming, China in October 2021. Historically, CBDs and other multilateral treaties have either alluded to or entirely overlooked the subterranean biome. A multilateral effort to robustly examine, monitor, and incorporate the subterranean biome into future conservation targets will enable the CBD to further improve the ecological effectiveness of protected areas by including groundwater resources, subterranean ecosystem services, and the profoundly endemic subsurface biodiversity. To this end, we proffer a conservation roadmap that embodies five conceptual areas: (1) science gaps and data management needs; (2) anthropogenic stressors; (3) socioeconomic analysis and conflict resolution; (4) environmental education; and (5) national policies and multilateral agreements.Peer reviewe

    Формирование эмоциональной культуры как компонента инновационной культуры студентов

    Get PDF
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been

    Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk

    Get PDF
    The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project-imputed genotype data in up to similar to 370,000 women, we identify 389 independent signals (P <5 x 10(-8)) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain similar to 7.4% of the population variance in age at menarche, corresponding to similar to 25% of the estimated heritability. We implicate similar to 250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC
    corecore