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Abstract  

To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we 

pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 

controls.  We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC 

histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3, 

9q31.1) and one for endometrioid EOC (5q12.3).  We then meta-analysed the results for high-grade 

serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, 

including 3,887 mutation carriers with EOC.  This identified an additional three loci at 2q13, 8q24.1 and 

12q24.31.  Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate 

susceptibility genes, including OBFC1, a novel susceptibility gene for low grade/borderline serous EOC. 
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Epithelial ovarian cancer (EOC) is a heterogeneous disease commonly classified into five major 

histotypes of invasive disease 1- (high grade serous (HGSOC), low grade serous (LGSOC), mucinous 

(MOC), endometrioid (ENOC) and clear cell carcinoma (CCOC)) - and two histotypes of borderline 

disease – serous and mucinous.  The histotypes have differences in lifestyle and genetic risk factors, 

precursor lesions, patterns of spread, molecular events during oncogenesis, response to 

chemotherapy, and prognosis.  HGSOC are thought to be derived from fallopian tube secretory 

epithelial cells through foci of endosalpingiosis existing as inclusion cysts lined with tubal epithelium at 

the ovarian and peritoneal surface2.  In contrast, CCOC, ENOC, and sero-endometrioid carcinomas 

appear to develop from endometriosis 3,4.  MOC resembles adenocarcinoma of the gastric pylorus, 

intestine, or endocervix and the majority of these tumors show gastrointestinal differentiation 5.  

Approximately 20% of the familial component of EOC risk is attributable to high-to-intermediate risk 

genes 6.  An unknown fraction is due to more common, lower risk genetic variation 7.  In European 

populations, genome-wide association studies (GWAS) have identified 23 EOC susceptibility alleles 

including 18 common variants associated with all histologies and/or serous EOC 8-15, one with borderline 

serous tumors 13, three with MOC 16 and one with CCOC 12.  The majority of these loci also showed 

associations (p<0.05) with EOC risk for BRCA1 or BRCA2 mutation carriers 15.  Five additional loci 

associated with EOC and breast and/or prostate cancer have been identified17;  three of these were 

associated with susceptibility to EOC, breast and prostate cancers, and two were associated only with 

breast and EOC risk.  However, the common genetic variants explain only 3.9% of the inherited 

component of EOC risk 15 and additional susceptibility loci are likely to exist, particularly for the less 

common, non-serous histotypes.  

We designed a custom Illumina array named the ‘OncoArray’, in order to identify new cancer 

susceptibility loci18.  The OncoArray includes ~533,000 variants (of which 260,660 formed a GWAS 

backbone) and has been used to genotype over 500,000 samples, including EOC case-control studies 

of the Ovarian Cancer Association Consortium (OCAC) and BRCA1 and BRCA2 mutation carriers of the 

Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA).  These data were combined with 

genotype data from the Collaborative Oncological Gene-environment Study (COGS) project 14,19 and 

three EOC GWAS 8,9.  We present the results of these association analyses together with functional 

annotation of the new genome-wide significant EOC susceptibility loci. 
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Results 

Association analyses 

Genetic association analyses were performed using genotype data from 25,509 population-based EOC 

cases and 40,941 controls from OCAC and meta-analysis of these data with 19,036 BRCA1 and 12,412 

BRCA2 mutation carriers from CIMBA, of whom 2,933 and 954, respectively, were affected with EOC.  

The numbers of participants by study for OCAC and CIMBA are shown in Supplementary table 1 and 

Supplementary table 2, respectively.   

We used data from the 1000 Genomes Project 20 reference panel to impute genotypes for 11,403,952 

common variants (MAF>1%) and evaluated the associations of these SNPs with EOC risk.  In OCAC alone, 

nine histotypes were investigated (all invasive, serous invasive, HGSOC, LGSOC, serous borderline, 

LGSOC and serous borderline combined, ENOC, CCOC and MOC).  Association analyses revealed six 

novel loci associated with serous EOC histotypes at genome-wide significance (p<5x10-8):  rs9870207 

at 3q28, rs13113999 at 4q32.3, rs150293538 at 8q21.11, rs7902587 at 10q24.33, rs8098244 at 

18q11.2 and rs6005807 at 22q12.1.  Five of these loci were associated with borderline serous EOC 

(3q28, 4q32.3, 8q21.11, 10q24.33 and 18q11.2) and four with LGSOC tumors (3q28, 8q21.11, 10q24.33 

and 18q11.2) (Table 1).  We also identified two loci associated with MOC (rs112071820 at 3q22.3 and 

rs320203 at 9q31.1) and one locus associated with ENOC (rs555025179 at 5q12.3).  The meta-analysis 

of OCAC and CIMBA revealed three additional serous EOC loci (rs2165109 at 2q13; rs9886651 at 

8q24.21; rs7953249 at 12q24.31).  The 8q24.21 SNP rs9886651 is close to two SNPs previously 

associated with serous EOC 9 (and Gjyshi A, Mendoza-Fandino G, Tyrer J, Woods NT, Lawrenson K et al., 

personal communication).  Multi-variable analysis of OCAC data showed that this is a third 

independent-associated variant in this region (unadjusted OR = 1.07, OR adjusted for rs1400482 and 

rs13255292 =1.07).  Variant rs6005807 at 22q12.1 was previously reported to be associated with serous 

EOC at sub-genome-wide significance 21. 

The association of the top SNP in each region with the nine EOC histotypes studied with EOC risk in 

BRCA1 and BRCA2 carriers is shown in Figure 1.  Four SNPs, rs8098244 (18q11.2), rs2165109 (2q13), 

rs9886651 (8q24.21), rs7953249 (12q24.31) showed associations with EOC risk for BRCA1 mutation 

carriers and one SNP, rs9886651 (8q24.21) showed an association with risk for BRCA2 carriers (P<0.05) 

Eighteen of the 23 previously published loci were associated with the same histotype at genome-wide 

significance (excluding the 5 pleitropic loci published by Kar et al, Supplementary table 3).  Of these, 11 

showed an association with EOC risk for BRCA1 mutation carriers and eight showed an association with 
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risk for BRCA2 carriers (P<0.05).  There was significant heterogeneity of risk between the five main, 

non-overlapping histotypes (high grade serous, low grade/borderline serous, endometrioid, clear cell 

and invasive/borderline mucinous) for 28 of the 40 new and previously published loci (Supplementary 

table 3). 

We carried out a competing-risks association analysis in BRCA1 and BRCA2 mutation carriers in order 

to investigate whether the observed associations with ovarian cancer in mutation carriers are 

influenced by associations with breast cancer risk.  For this we used the most significantly associated 

genotyped SNPs for this 22.  The EOC HR estimates were consistent with the estimates from the main 

analysis for all SNPs (results not shown).  Some evidence suggested that rs7953249 at 12q24.31 was 

associated with reduced breast cancer risk in BRCA1 mutation carriers (HR=0.95, 95%CI 0.91-0.99, 

p=0.034) and that SNP rs2165109 at 2q13 was associated with increased breast cancer risk in BRCA2 

mutation carriers (HR=1.08, 95%CI 1.01-1.14, p=0.02).  When these associations were analyzed by 

tumor estrogen-receptor status, the associations for the two SNPs were restricted to ER-negative 

breast for BRCA1 (p=0.026 for rs7953249) and BRCA2 (p=0.02 for rs2165109) mutation carriers. 

Association analyses adjusted for the most significant SNP in each region (including 3 independent SNPs 

at 8q24.21) did not reveal any additional independent association signals in these regions.  At the 12 

new EOC risk regions, 571 SNPs were deemed potentially causal (Supplementary table 4) and carried 

forward for functional annotation, eQTL and mQTL analyses.   

Functional and molecular analyses  

Of the 571 candidate causal variants in the 12 novel loci, 562 variants are located in non-coding DNA 

sequences and may influence the expression of nearby target genes 23.  We used a variety of in silico 

approaches to identify putative, tissue-specific, regulatory biofeatures and candidate susceptibility 

genes associated with risk SNPs at each locus.  For the few risk-associated, non-synonymous variants in 

protein coding genes, we also evaluated predicted effects on protein function.  

Functional annotation of candidate causal alleles: We mapped the set of 562 non-protein coding 

candidate causal SNPs at the 12 susceptibility loci to regulatory biofeatures, using a variety of 

epigenomic marks profiled in normal and cancer tissues relevant to the cellular origins of different 

ovarian cancer histotypes (Supplementary table 5).  The cell types interrogated included: (1) fallopian 

tube (FT33; FT246) and ovarian surface epithelial cell lines (IOSE4; IOSE11) for serous precursor tissues; 

(2) serous-related cancer cell lines including HGSOC cell lines (UWB1.289; CaOV3) and a LGSOC cell line 

(OAW42); (3) endometriosis epithelial cells (EEC16), as a likely precursor of ENOC; (4) cell types relevant 
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to MOC, including MOC cell lines (GTFR230; MCAS) and both colonic normal (colon crypt) and cancer 

tissues (HCT116; HeLa-S3).  The epigenomic marks annotated were open chromatin, identified using 

formaldehyde assisted isolation of regulatory element sequencing (FAIRE-seq) and DNase I 

hypersensitivity sequencing (DNase-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) of 

histone modifications, specifically histone H3 lysine 27 acetylation (H3K27ac, which denotes active 

chromatin) and histone H3 lysine 4 monomethylation (H3K4me1, which marks active and poised 

enhancers). SNPs were also intersected with ENCODE transcription factor ChIPseq data.  All tissue types 

were evaluated for all risk loci.  The SNP-biofeature intersections by tissue type are illustrated in Figure 

2 and Supplementary table 6. 

Nine (1.6%) of the 571 candidate causal SNPs lie in protein coding sequences.  Five of these are 

synonymous and four are non-synonymous but predicted to be benign by Polyphen-2 (Supplementary 

table 6).  Four SNPs lie within untranslated regions of protein-coding genes and so could affect mRNA 

stability: rs1051149 and rs1051150 in the 3’ UTR of LAMA3 and rs12327412 in the 5’ UTR of TTC39C, 

all at the 18q11.2 locus; and rs1018128 in the 3’ UTR of GMNC at 3q28.  The majority of biofeature-

SNP intersections (n=166, 29% of all candidate causal SNPs and 97% of candidate causal SNPs 

overlapping a biofeature) were for SNPs lying within active chromatin, and/or open chromatin.  Eleven 

SNPs lie in the promoters of four genes (PVT1, HNF1A, TTC39C and TTC28) (Supplementary Table 6).  

At six serous risk loci (4q32.3; 3q28; 8q21; 18q11; 8q24; 22q12) we observed extensive SNP-biofeature 

overlaps, particularly in serous-related tissue types.  In contrast, the two MOC susceptibility loci 

(3q22.3, 9q31.1) were biofeature-poor regions and showed little or no SNP-biofeature intersections in 

any of the tissue types under investigation, including MOC and ENCODE cell lines.  At the endometrioid 

EOC risk locus (5q12.3) we observed enhancers in endometriosis, ovarian, fallopian and EOC cell types 

flanking the small number risk associated SNPs (n=8), none of which coincided with regulatory 

elements.  

Several studies have shown that common variant susceptibility alleles are significantly enriched for 

regulatory elements detected in disease-relevant tissue types.  Therefore we tested for enrichment of 

SNP-H3K27ac intersections at each locus because H3K27ac was the most comprehensively profiled 

regulatory feature across different tissue types (Supplementary table 7).  At the 12q24.31 locus a large 

region of active chromatin spanning the HNF1A promoter drove a strong enrichment for risk SNP-

H3K27ac intersects in the OAW42 LGSOC cell line (P=4.45x10-22).  At 10q24.33 (which is associated with 

LGSOC and borderline SOC) we identified a significant enrichment of acetylated H3K27 in normal 

fallopian cells (FT33 P=1.09x10-4, FT246 P=4.29x10-3), HGSOC ovarian cancer cells (UWB1.289 
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P=6.23x10-3), MOC cells (GTFR230 P=5.16x10-3) as well as, somewhat surprisingly, colorectal cancer 

cells (HCT116 P=2.64x10-4) and cervical cancer cells (HeLa-S3 P=9.60x10-12). This locus contains several 

clusters of H3K27ac activity and TF binding in ovarian and ENCODE datasets, and these highly active 

regions showed extensive overlap with candidate causal alleles (Figure 3).   

Identifying candidate susceptibility gene targets at risk loci: We used several approaches to identify 

candidate target genes at the 12 risk loci. First, we hypothesized that target genes underlying disease 

susceptibility are more likely to display prevalent copy number alterations in ovarian tumor tissues.  

Amplifications were the most frequent alteration at 6 of the 12 susceptibility loci (Supplementary figure 

1).  Contiguous genes were commonly amplified in the same sample indicating segmental amplifications 

(data not shown). HNF1A, ORAI1, CHEK2, XPB1, BUB1, and FOXL2 are found inside the same 

topologically associating domain (TAD) as candidate causal SNPs and have been previously implicated 

in ovarian cancer development (Supplementary figure 2).  Notably, HNF1A, ORAI1, and FOXL2 are 

amplified in >5% of EOC samples.  No TAD was identified for 8q24.21; but MYC and PVT1 appear to be 

the targets for multiple enhancer elements containing independent EOC risk associations for HGSOC at 

this locus (Gjyshi et al., personal communication). 

We also performed expression and methylation quantitative trait locus (eQTL and mQTL) analyses in 

several data sets comprising methylation/expression profiling and germline genotyping in relevant 

tumor tissues (see Methods).  For eQTL analyses, we evaluated associations between the candidate 

causal SNPs and all genes profiled within 1 Mb of the index risk SNP at each locus, since this window 

will contain most cis-eQTL associations 23.  Results of the eQTL analyses in each data set were adjusted 

for tumor copy number and methylation status 24 and a meta-analysis of the two HGSOC data sets from 

TCGA and the Mayo Clinic are shown in Supplementary table 8-11.  The most significant eQTL 

associations in both HGSOC data sets were identified between the candidate causal risk SNPs at the 

10q24.33 risk locus and OBFC1 expression (TCGA-rs11597399 - P = 3.1 x 10-10; Mayo-rs7902587- P = 

4.0 x 10-4; meta-analysis-rs34379047- P = 2.1 x 10-11).  The risk (T) allele was associated with reduced 

OBFC1 expression in both data sets (Figure 3d).  We then evaluated all SNPs at this locus (not just the 

candidate causal SNPs) for eQTL associations; the SNPs with the most significant eQTL associations for 

OBFC1 were also candidate causal SNPs for the risk association, reinforcing OBFC1 as the target gene.  

No expression associations were identified at P < 10-4 for the candidate causal risk SNPs at any other 

locus in the eQTL meta-analysis.  Thirty-two ENOC samples were used to conduct an eQTL analysis 

focused on the 5q13.1 ENOC risk locus but this did not reveal any associations at P < 0.05 

(Supplementary table 10). 
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Methylation QTL analyses were restricted to the set of 67 CpGs with the most significant association 

with decreased expression of the 74 genes of interest (within a 1Mb region of the index SNP) in the 12 

regions.  Results are presented for the most significant mQTL associations for each SNP based on the 

reduced set of CpGs (Supplementary table 12).  We identified two regions with mQTL associations at 

P<0.005.  At 2q13, the risk allele [G] of rs56226558 was associated with reduced methylation of the 

CpG cg21469370 (p=1.4 x 10-3), with methylation being associated with reduced expression of BCL211 

(p=1.1x10-6) even though cg21469370 lies in the gene body of ACOXL.  At 3q22.3, the risk allele [C] of 

rs68088905 was associated with reduced methylation of the CpG cg06726820 in the promoter of RBP1 

(mQTL p = 4.9 x 10-3).  Methylation was strongly associated with reduced RBP1 expression (p=1.7x10-

36).  We found no highly significant mQTL associations for genes at any other locus, and the eQTL SNP 

at 10q24.33 was not association with DNA methylation. 

SNPs in the 10q24.33 locus revealed the most significant eQTL with expression of the OBFC1 gene.  The 

most significant eQTL SNPs also showed the most epigenetic marks, including rs35007589 (eQTL p-

value 2.3x10-11), rs35176048 (eQTL p-value 2.6 x10-11) and rs34685262 (eQTL p-value 3.8 x10-11).  These 

SNPs intersect regions of open chromatin, H3K27ac and H3K4me1 signal in normal ovarian and fallopian 

tube epithelial cells and, for rs35176048 and rs34685262, in HGSOC cell lines.  These enhancers are not 

specific to ovarian cell types.  At this locus, 11 candidate causal SNPs are predicted by motifbreakR 25 

to alter transcription factor binding sites, of which 8 are predicted to have a strong effect on TF binding 

(Supplementary table 13).  Of particular interest, rs2488000 (eQTL p-value = 1.4 x 10-10) is predicted in 

silico to strongly impact the binding of CTCF, a ubiquitously expressed transcriptional regulator that 

plays a key role in insulator function and chromatin structure (Figure 3c). Furthermore in ENCODE there 

is evidence from ChIPseq experiments that CTCF does bind at this location in monocytes. Other SNPs 

predicted to have a strong effect on the binding of other cancer-relevant TFs are rs11813268 (ETS1), 

rs7907606 (FOXP1) and rs2995264 (IRF8) (Supplementary table 13). 

At 8q24.21, the candidate causal variants span a region of ~20kb that includes the promoter and first 

exon of PVT1, an oncogenic long non-coding RNA (lncRNA) with known roles in breast and ovarian 

cancer 26.  The 8q24 region is also a hotspot for association with other cancers 27 with PVT1, CMYC and 

novel lncRNAs identified as candidate target genes.  Five SNPs (rs10956390, rs10098831, rs6470578, 

rs6990534 and rs4410871) coincide with 11 or more biofeatures in normal ovarian and fallopian 

epithelial cells, and ovarian cancer cells. 

Discussion 
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We have identified 12 novel loci associated with different histotypes of EOC at genome-wide 

significance.  Despite the use of a stringent significance threshold it is possible that some of these 

represent false positive associations.  Wakefield has suggested the use of an approximate Bayes factor 

to calculate the Bayes false discovery probability (BFDP) 28.  We have estimated the BFDP based on a 

plausible odds ratio of 1.2 and a prior probability of association of 0.0001.  The BFDP was less than 

10% for 11 of the 12 associations.  We also calculated the BFDP for the 22 previously reported loci, of 

which 17 were <1%, 1 was >1% but less than 10% and 4 were greater than 10%.  We did not calculate 

the BFDP for the 5 pleiotropic loci reported by Kar et al, 2016 17.  These five loci together with the 29 

loci with BFDP<10% bring the total number of susceptibility loci for different histotypes of EOC to 34 

for women of European ancestry, of which 27 are associated with risk of invasive EOC at 

P<0.01.  Assuming a polygenic variance of 1.45 29 the 27 loci account for approximately 6.4% of the 

polygenic risk in the population.  Incorporating common EOC susceptibility variants into risk 

assessment tools will improve risk prediction and may be particularly useful for refining risk estimates 

in BRCA1 and BRCA2 mutation carriers. 

Some strata in the OCAC analyses pooled data from several studies from the same country.  This might 

increase the potential for bias because of population stratification, but we expect any inflation due to 

population stratification to be effectively removed by adjusting for the principal components.  In order 

to evaluate the possible magnitude of such a bias we compared the inflation of the median test statistic 

for the analysis of the OncoArray data stratified by study with an analysis in which all the cases and 

controls were combined into a single stratum.  There was little difference (=1.054 v =1.078).  As these 

inflation factors are not adjusted for sample size, some of the difference is due to the increase in 

effective sample size of the non-stratified analysis, suggesting that any bias do to pooling data from 

multiple studies will be minimal. 

Consistent with previous studies in EOC and other cancer types, the vast majority of the risk-associated 

variants were located in non-protein coding regions of the genome 30 suggesting these variants impact 

target gene expression by altering the activity of functional element(s) that regulate the expression of 

one or more susceptibility genes.  Since non-coding biofeatures, such as enhancers, show a high degree 

of tissue specificity, we intersected EOC risk SNPs with regions of active chromatin catalogued in cell 

lines representing the different EOC histotypes (HGSOC, ENOC, LGSOC and MOC) and in EOC precursor 

cells (OSEC/FTSEC for LGSOC/HGSOC, EEC for ENOC and colonic crypt for MOC). Enrichment analyses 

test for over-representation of cell-type specific biofeatures intersecting risk variants at confirmed risk 

loci, compared to a lack of enrichment in non-disease associated tissues.  A major strength of our 

approach was the ability to interrogate histotype-specific epigenomic profiles and so in addition to 
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identifying the putative functional targets of risk SNPs, these analyses can also indicate whether some 

cell types are more likely to be relevant to disease pathogenesis compared to other cell types. For 

example we detected a significant enrichment of active chromatin marks coinciding with SNPs in 

fallopian tube epithelial cells at the 10q24.33 LGSOC/borderline serous locus, which could reflect recent 

pathological evidence that some of these tumors arise in the distal fallopian tube 31, as well as HGSOC 

2.  At the same locus, we also identified an enrichment for biofeatures in a primary MOC cell line, a 

cancer histotype that is often associated with deregulation of the MAPK pathway; which is also 

perturbed in LGSOC 32. Given the growing evidence that regulatory mechanisms are highly tissue 

specific, it is perhaps to be expected that we find such enrichments in cell types associated with EOC 

development. However, the lack of enrichment at MOC and ENOC risk loci may indicate that alternative 

precursor cell types give rise to these histotypes rather than the cell types evaluated in the current 

study.   

Expression QTL analysis identified associations between the most statistically significant risk-associated 

SNPs at 10q24.33 and OBFC1, many of which also coincide with epigenetic biofeatures.  OBFC1 is a 

subunit of an alpha accessory factor that stimulates the activity of DNA polymerase-alpha-primase, the 

enzyme that initiates DNA replication.  OBFC1 also appears to function in a telomere-associated 

complex that binds telomeric single-stranded DNA in vitro and localizes at telomeres in vivo 33.  Four 

SNPs in this region (rs2487999, rs4387287, rs9420907 and rs9419958) have previously been reported 

to be associated with telomere length (NHGRI-EBI GWAS catalog 27, Supplementary table 14).  The r2 

between these and rs7902587 are between 0.52 and 0.93 (1000 Genomes European populations).  

However, the associations of all four with LGSOC and borderline serous EOC are attenuated when 

adjusted for rs7902587 suggesting a single association peak.  The alleles associated with a decrease in 

leukocyte telomere length being associated with an increased risk of LGSOC and borderline serous EOC.  

These findings are consistent with the association between borderline EOC and rs7705526 at 5p15 

(adjacent to the telomerase reverse transcriptase gene)13.  Furthermore, the histotype specificity is 

consistent with the suggestion that telomere length differs between the different histotypes of EOC 34.   

Candidate causal variants at three of the 12 novel loci are associated with multiple traits in the NHGRI-

EBI GWAS catalog (P<5x10-8).  These traits converge on pathways involved in inflammation and 

immunity, including monocyte count, C-reactive protein (CRP) levels, gamma-glutamyl transpeptidase 

levels, N-glycan levels, allergen sensitization, and multiple sclerosis (Supplementary table 14). For 

example, at the 12q24.31 HGSOC risk locus, the risk allele of four candidate causal SNPs (rs7979473, 

rs1183910, rs2393791, rs7310409) have previously been associated with raised CRP levels in blood 

plasma, a marker of inflammation.  This is consistent with the established link between chronic 
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inflammation and increased cancer risk.  In addition SNPs within 500kb of the top SNP at 2q13, 8q24.21, 

10q24.33 and22q12.1 are associated with several different cancers although only one of these is a 

candidate causal EOC variant (rs2995264 at 10q24.33 associated with cutaneous malignant melanoma). 

This study demonstrates the strength of large-scale collaborations in identifying common variant risk 

associations for complex traits such as EOC which is rare, has a high mortality rate, and exhibits 

heterogeneity by histotype. As the largest study to date with over 90,000 EOC cases and controls 

including an additional ~25,000 previously unstudied participants, we identify several novel risk loci 

specific to the rarer EOC histotypes: ENOC, MOC, LGSOC and borderline EOC.  The histotype-specific 

nature of these associations adds to the somatic, epidemiological and clinical data indicating that EOC 

histotypes can be thought of as distinct diseases.  The lack of heterogeneity between studies of varying 

designs, carried out in different populations, and the high levels of statistical significance, with 

confirmation of known EOC susceptibility loci, provide evidence that these are robust associations.  

Molecular analyses of genes and the tissue specific regulatory architecture at these loci, which 

combined publicly available datasets with systematic, large-scale genome wide profiling experiments, 

point to a small number of non-coding biofeatures and target genes that may play a histotype-specific 

role in EOC initiation and development. Detailed functional studies will be required to define the 

underlying biology of SNP-regulatory interactions to identify the causal SNP(s) at each locus, and to 

confirm which candidate susceptibility genes represent the targets of these risk SNPs.  Evolving 

technologies, in particular CRISPR-Cas9 genome editing, now enable precision modification of risk SNPs 

to create isogenic models of different alleles 35, enabling the effects of each allele on disease 

pathogenesis to be studied, for example at 19p13 36, 8q24 14, 17q12 12 and 5p15 13.  Finally, given that 

several previously identified EOC susceptibility alleles are associated with risk of other cancers 17, and 

that there are similarities in molecular phenotype and/or shared tissue of origin between endometrial 

cancer, endometriosis and ENOC and CCOC 37  as well as basal-like breast cancer 38, we anticipate that 

the loci reported here may be also associated with risk of other cancer-related traits.   
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Figure Legends 

Figure 1: Histotype specific associations (odds ratios) of top SNP in 12 novel EOC susceptibility regions. 

The forest plot shows the point estimates of odds ratios with 95% confidence intervals around each 

estimate. Odds ratios and confidence intervals in bold are histotypes significant at nominal P<0.05. 

 

Figure 2.  Number of overlaps between causal SNPs and H3K27ac in relevant tissues and cell lines. Height 

of each bar in the histogram represents the number of candidate causal SNPs at each locus overlapping 

H3K27ac marks in a particular cell line. Loci are grouped according to their association with different 

histotypes of ovarian cancer. The number of causal SNPs at 100:1 odds relative to the top regional SNP 

is indicated by the red circles (scale below, right). In the key cell lines are grouped according to their 

likely relevance to the different histotypes. Abbreviations: mucinous ovarian cancer (MOC), low grade 

serous ovarian cancer (LGSOC), high grade serous ovarian cancer (HGSOC), and epithelial ovarian 

cancer (EOC) precursors. 

 

Figure 3. Functional analysis of the chr10q24.33 locus. (a) Active chromatin, denoted by H3K27ac 

signaling, in EOC-relevant cell types. (b) Regional association plot for genotyped and imputed SNPs.  The 

dashed box highlights the region shown in panel (a) (c) MotifbreakR analysis, a non-canonical CTCF 

motif is significantly altered  by SNP rs2488000. (d) EQTL analysis, OBFC1 expression is associated with 

rs11597399 genotype in HGSOCs from TCGA.  Box and whisker plot showing median (horizontal line 

within box), interquartile range (IQR; length of box) and 1.5 times the IQR (whiskers) of OBFC1 

expression for each genotype. 
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Table 1: New genome-wide significant epithelial ovarian cancer susceptibility loci 

SNP Histotype Chr Position Risk Allele RAF r2a OR LCL UCL P-valueb P-hetc BFRP 

OCAC analyses            

rs112071820 Mucinous: invasive + borderline 3q22.3 138,849,110 G:GCCAG 0.33 0.86 1.29 1.20 1.37 1.5 x 10-13 0.88 <1% 

rs9870207 Serous: LG + borderline 3q28 190,525,516 G:A 0.73 0.97 1.19 1.12 1.27 4.5 x 10-8 0.61 6% 

rs13113999 Serous: borderline 4q32.3 167,187,046 G:T 0.56 0.86 1.23 1.14 1.32 4.7 x 10-8 0.52 7% 

rs555025179 Endometrioid 5q12.3 66,121,089 GTGACAC 0.56 0.86 1.18 1.11 1.26 4.5 x 10-8 0.79 5% 

rs150293538 Serous: LG + borderline 8q21.11 77,320,354 C:T 0.99 0.77 2.19 1.65 2.90 2.0 x 10-9 0.38 3% 

rs320203 Mucinous: invasive + borderline 9q31.1 104,943,226 C:A 0.88 0.98 1.29 1.18 1.41 1.7 x 10-8 0.56 11% 

rs7902587 Serous: LG + borderline 10q24.33 105,694,301 C:T 0.12 0.94 1.29 1.18 1.41 4.0 x 10-8 0.99 7% 

rs8098244 Serous: LG + borderline 18q11.2 21,405,553 G:A 0.31 0.98 1.19 1.12 1.27 3.9 x 10-8 0.087 3% 

rs6005807 Serous: invasive 22q12.1 28,934,313 T:C 0.91 0.99 1.17 1.11 1.23 4.5 x 10-9 0.15 <1% 

OCAC and CIMBA meta-analysis            

rs2165109 Serous HG + BRCA1/2 2q13 111,818,658 A:C 0.25 1.00 1.09 1.05 1.12 4.2 x 10-8 0.66 2% 

rs9886651 Serous HG + BRCA1/2 8q24.21 128,817,883 A:G 0.46 0.99 1.08 1.05 1.11 3.5 x 10-9 0.26 <1% 

rs7953249 Serous HG + BRCA1/2 12q24.31 121,403,724 A:G 0.42 1.00 1.08 1.06 1.06 1.1 x 10-9  0.67 <1% 

a average imputation r2 across the six data sets; b From analysis of imputed genotyped derived from one-step imputation (see methods); c test for heterogeneity of effect 
between study strata in OCAC; RAF, risk allele frequency; LCL, lower 95% confidence limit; UCL, upper 95% confidence limit; LG, low grade; HG, high grade; position is 
genome build 37; BFRP Bayes false positive reporting probability assuming prior of 1:10,000  
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METHODS 

Study samples 

Genotype data from six OCAC and two CIMBA genotyping projects were used for these analyses 

(Supplementary table 1).  All participating studies were approved by the relevant research ethics committee 

and all participants provided written, informed consent. 

OCAC:  The OCAC OncoArray data comprised 63 genotyping project/case-controls sets (Supplementary table 

1).  Some studies (e.g. SEARCH) contributed samples to more than one genotyping project and some case-

control sets are a combination of multiple individual studies.  The following numbers are for the subjects of 

European ancestry that passed QC.  The analyses included 66,450 samples from seven genotyping projects:  

40,941 controls, 22,406 invasive cases and 3,103 borderline cases.  The number of cases by histotype were 

serous borderline (1,954), mucinous borderline (1,149), LGSOC (1,012), HGSOC (13,037), ENOC (2,810), CCOC 

(1,366) and other EOC (2,764). 

CIMBA:  Eligibility in CIMBA is restricted to females aged 18 years or older with pathogenic variants 

in BRCA1 or BRCA2.  The majority of the participants were sampled through cancer genetics clinics, including 

some related participants.  Sixty-three studies contributed OncoArray and iCOGS genotype data on 31,448 

mutation carriers. For the samples genotyped on OncoArray, after quality control (see below), data were 

available on 15,694 BRCA1 mutation-carriers and 10,988 BRCA2 mutation carriers, of whom 2,372 and 849, 

respectively, were affected with EOC (Supplementary table 2).  We also obtained genotype data on 3,342 (561 

affected) BRCA1 and 1,424 (105 affected) BRCA2 non-overlapping samples genotyped using the iCOGS array 

1,2.  

Genotype data and Quality Control (QC) 

Data from all the genotyping projects apart from the OCAC and CIMBA OncoArray projects have been 

published previously 1,3-6.  Genotypes for OCAC samples were preferentially selected from the different 

projects in the following order: OncoArray, Mayo GWAS, COGS, and other GWAS.   

Genotyping was performed at five centers: University of Cambridge, Center for Inherited Disease Research 

(CIDR), National Cancer Institute (NCI), Genome Quebec and Mayo Clinic. OncoArray sample QC was similar to 

that carried out for the other projects (as described 5).  We excluded samples if they had a  genotyping call 

rate < 95%, excessively low or high heterozygosity, if they were not female, or were duplicates (cryptic or 

intended).  Duplicates and close relatives were identified using in-house software that calculates a 

concordance matrix for all individuals.  Samples with concordance>0.86 were flagged as duplicates and 

samples with concordance between 0.74 and 0.86 were flagged as relatives.  The comparison was performed 
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among all the OncoArray samples, and all the previously genotyped samples.  The concordance statistics were 

used to identify cryptic duplicates and expected duplicates whose genotypes did not match.  We attempted 

to resolve these with the study investigators.  If the discrepancy could not be resolved both samples were 

excluded.  In OCAC, for confirmed cryptic duplicates and relatives, we retained one sample in the analysis.  For 

case-control pairs we excluded the control, while for case-case and control-control pairs we excluded the 

sample with the lower call rate.  In CIMBA, relatives were included in the analysis and the association tests 

were adjusted accordingly. For confirmed duplicates, the sample with the higher call rate was retained.   

SNP QC was carried out according to the OncoArray QC Guidelines. 7  Only those SNPs that passed QC for all 

consortia were used for imputation.  We excluded SNPs with a call rate <95%, SNPs deviating from Hardy-

Weinberg equilibrium (P<10-7 in controls or unrelated samples in CIMBA and P <10-12 in cases) and SNPs with 

concordance<98% among 5,280 duplicate pairs.  For the imputation, we additionally excluded SNPs with a 

MAF<1% and a call rate <98% and SNPs that could not be linked to the 1000 genomes reference or differed 

significantly in frequency from the 1000 genomes (European frequency) and a further 1,128 SNPs where the 

cluster plot was judged to be inadequate.  Of the 533,631 SNPs which were manufactured on the array, 

494,813 SNPs passed the initial QC and 470,825 SNPs were used for imputation.  Samples with overall 

heterozygosity <5% or > 40% were excluded. 

Ancestry analysis 

Intercontinental ancestry was calculated for the OCAC samples using the software package FastPop 

(http://sourceforge.net/projects/fastpop/) 8 developed specifically for the OncoArray.  Only the samples with 

>80% European ancestry were used for these analyses.  For the CIMBA samples 33,661 weakly correlated 

autosomal SNPs (pair-wise r2 less than 0.1) were used to compute the genomic kinship between all pairs of 

individuals, along with 267 HapMap samples (CHB, JPT, YRI and CEU).  These were converted to distances and 

subjected to multidimensional scaling. Using the first two components, we calculated the proportion of 

European ancestry for each individual and excluded samples with >27% non-European ancestry to ensure that 

samples of Ashkenazi Jewish ancestry were included in the final sample.  Analysis using FastPop provided 

virtually identical results. 

Principal components analysis 

Principal component analysis for the OncoArray data was carried out using data from 33,661 uncorrelated 

SNPs (pair-wise r2 less than 0.1) with minor allele frequency greater than 0.05 using an in house program 

(available at http://ccge.medschl.cam.ac.uk/software/pccalc/).  Principal components analysis for the other 

genotype data sets was carried out as previously described. 1,5 
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Imputation 

We performed imputation separately for each genotyping project data set.  We imputed genotypes into the 

reference panel from the 1000 Genomes Project (v3 October 2014). 9  We initially used an effcient two-step 

procedure, which involved pre-phasing using SHAPEIT 10 followed by imputation of the phased data using 

IMPUTE2 11.  We then performed more accurate imputation for any region with a SNP with P<10−6 in the OCAC 

analyses or the OCAC/CIMBA meta-analysis.  The boundaries were set +/− 500kb from the most significant SNP 

in each region.  The single-step imputation used IMPUTE2 without pre-phasing with some of the default 

parameters modified.  These included an increase of the MCMC iterations to 90 (out of which the first 15 were 

used as burn-in), an increase of the buffer region to 500kb and increasing to 100 the number of haplotypes 

used as templates when phasing observed genotypes. 

After imputation, 85 per cent of common variants including both single nucleotide variants and small indels 

(MAF>0.05) have an imputation r2 imputation accuracy > 0.9 with 97 percent having imputation r2 > 0.7.  Of 

the rare variants (0.001 < MAF < 0.05), 28 per cent have an imputation r2> 0.9 and 58 per cent have an 

imputation r2> 0.7. 

Association analyses in the unselected ovarian cancer cases and controls from OCAC and CIMBA 

We excluded SNPs from the association analysis if their imputation accuracy was r2<0.3 or their minor allele 

frequency (MAF) was <0.01.  In total, genotypes for 11,595,112 million variants were available for analysis.   

Association analyses OCAC 

We evaluated the association between genotype and disease using the imputed genotype dosage in a logistic 

regression model.  We carried out initial, genome-wide analyses separately for OncoArray, COGS and the five 

GWAS datasets and pooled the results using a fixed effects meta-analysis.  The analyses were adjusted for 

study and for population substructure by including the eigenvectors of project-specific principal components 

as covariates in the model (nine for OncoArray, five for COGS, two for UK GWAS, and two for the US, BWH and 

POL GWAS, and a single PC for the MAY GWAS).  The number of eigenvectors chosen was based on the 

inflection point of a scree plot. After one-step imputation of the genotypes in the regions of interest we used 

genotype dosages in a single logistic regression model with adjustment for each genotyping project/study 

combination and nineteen principal components.  Principal components were set to zero for samples not 

included in a given project.  We used custom written software for the analysis. 

EOC is a heterogeneous phenotype with five major histotypes for invasive disease – HGSOC, LGSOC, MOC, 

ENOC and CCOC – and two histotypes of borderline disease – serous and mucinous.  The pattern of association 

across the different histotypes varies for the known EOC risk loci.  We therefore carried out the association 
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analysis on the following nine histotypes: all invasive disease; HGSOC; LGSOC; all invasive serous; serous 

borderline; LGSOC and borderline serous combined; ENOC; CCOC; and mucinous invasive/mucinous 

borderline combined.  

Association analyses CIMBA 

We carried out the ovarian cancer association analyses separately for BRCA1 and BRCA2 carriers and for 

OncoArray and COGS samples. The results were pooled using fixed effects meta-analysis.  The primary analysis 

was carried out within a survival analysis framework with time to ovarian cancer diagnosis as the endpoint.  

Mutation carriers were followed until the age of ovarian cancer diagnosis, or risk-reducing salpingo-

oophorectomy (RRSO) or age at study recruitment.   

Breast cancer diagnosis was not considered as a censoring event.  In order to account for the non-random 

sampling of BRCA1 and BRCA2 carriers with respect to disease status we conducted the analyses by modelling 

the retrospective likelihood of the observed genotypes conditional on the disease phenotype.  We assessed 

the associations between genotype and risk of ovarian cancer using a score test statistic based on the 

retrospective likelihood. 12  To account for the non-independence among related individuals in the sample, we 

used an adjusted version of the score test statistic, which uses a kinship-adjusted variance of the score. 13  We 

evaluated associations between imputed genotypes and ovarian cancer risk using a version of the score test 

as described above but with the posterior genotype probabilities replacing the genotypes.  All analyses were 

stratified by the country of origin of the samples and for Ashkenazi Jewish origin. 

We carried out the analyses using custom written functions in Fortran and Python. The score test statistic was 

implemented in R version 3.0.1. 

OCAC/CIMBA meta-analysis 

We conducted a meta-analysis of the EOC associations in BRCA1, BRCA2 carriers and OCAC samples using an 

inverse variance approach assuming fixed effects.  We combined the logarithm of the per-allele hazard ratio 

estimate for the association with EOC risk in BRCA1 and BRCA2 mutation carriers and the logarithm of the per-

allele odds ratio estimate for the association with EOC (any-subtype) and serous EOC in OCAC. The number 

of BRCA1 and BRCA2 samples with tumor histology information was too small to allow for subgroup analyses. 

However, previous studies have demonstrated that the vast majority of EOCs in BRCA1 and BRCA2 mutation 

carriers are HGSOC.  Meta-analyses were carried out using the software “metal”, 2011-03-25 release 14. 

We evaluated whether there is evidence for multiple independent association signals in the region around 

each newly identified locus by evaluating the associations of genetic variants in the region while adjusting for 
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the SNP with the smallest meta-analysis p-value in the respective region.  This was done separately for 

BRCA1 carriers, BRCA2 carriers and OCAC. 

Candidate causal SNPs in each susceptibility region 

In order to identify a set of variants most likely to mediate the observed association – the credible causal 

variants - we excluded SNPs with causality odds of less than 1:100 by comparing the likelihood of each SNP 

from the association analysis with the likelihood of the most strongly associated SNP. 

Functional annotation of risk–associated variants 

Expression and methylation quantitative trait loci analyses 

A TCGA data set15 was available for 326 HGSOC tumors in women of European ancestry. Ancestry was 

estimated using the Local Ancestry in adMixed Populations (LAMP, 16) software package and individuals with 

> 95% European descent were retained for further analyses.  Matched gene expression (measured on the 

Agilent 1M microarray), CpG methylation (measured on the Illumina Infinium HumanMethylation27 

BeadChip), copy number alteration (called using the Affymetrix SNP 6.0), and germline genotype (called using 

the Affymetrix SNP 6.0) were also available.  A Mayo Clinic data set was available for 209 serous EOC tumors 

and 32 ENOC tumors in women of European ancestry.  Matched gene expression (measured on the Agilent 

whole human genome 4x44K expression microarray), CpG methylation (measured on the Illumina Infinium 

HumanMethylation450), copy number alteration (called using the OncoArray), and germline genotype (called 

using the OncoArray) were available for all of these samples.  Genotypes were imputed into the 1000 Genomes 

October 2014 (Phase 3, version 5) 9 European reference panel for both data sets.  Expression QTL analyses 

were performed using linear regression as implemented in the R package Matrix eQTL 17. Only variants with 

imputation accuracy R2 > 0.3 were analyzed.  Prior to eQTL analyses the effects of tumor copy number and 

methylation on gene expression were regressed out as previously described18. For the Mayo data set, we 

performed separate analyses on the HGSOC and ENOC samples. Results for the two HGSOC data sets were 

combined in a random effects meta-analysis. We focused on local or cis-acting eQTLs between SNPs in the 

1:100 list of potentially causal variants and all genes up to 1 Mb on either side of these SNPs. 

mQTL analyses for the 1:100 potentially causal SNPs in regions of interest (1 MB on either side of the index 

SNP) were conducted using the Mayo dataset only, because methylation was assayed with the much denser 

450K array and the Mayo sample included histologies other than HGSOC.  Within each region, CpG probes 

were filtered based on their association with gene expression.  For each expression probe within the region, a 

linear model was fit by CpG probe adjusted for age and CNV overlapping the expression probes.  The CpG with 

the strongest negative test statistic for each gene (across multiple expression probes per gene) was retained 
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for mQTL analysis in order to reduce the total number of tests.  We performed VanderWaerden rank 

transformations of the beta values to account for skewed distributions in the beta-values, and conducted 

linear regression of the SNP genotypes on the transformed beta values, adjusted for age and CNV overlapping 

the CpG probe; missing CNV values were imputed using the median for the non-missing samples within each 

region.  As a sensitivity analysis, we also performed analyses adjusted only for age.  Analyses were conducted 

for all histologies, as well as for the serous, HGSOC, and ENOC subsets.  Raw.  Loci were eliminated from 

analyses where there were either no Agilent probes for the region on the array (9q31.1) or there were no 

negatively associated CpGs on the 450k array (8q21.11). 

For eQTL and mQTL analyses two-sided p-values are reported. 

Mapping risk SNPs to biofeatures 

Cell culture  

Cell lines were cultured in their respective media as follows: GTFR230, NOSE-CM (1:1 Medium 199: MCDB105 

(both Sigma Aldrich), 15% fetal bovine serum (FBS, Hyclone), 500 ng/ml hydrocortisone, 5 μg/ml insulin (both 

Sigma Aldrich) 10 ng/ml epidermal growth factor and 34 μg protein/ml bovine pituitary extract (both Life 

Technologies); MCAS, EMEM supplemented with 15% FBS (Seradigm); RMG-II and JHOC5, RPMI plus 10% FBS 

and OAW42, DMEM containing 10% FBS, 20 μg/ml insulin and sodium pyruvate (Lonza). Cell lines were 

authenticated by profiling short tandem repeats using the Promega Powerplex 16HS Assay (performed at the 

University of Arizona Genetics Core facility) and all cultures tested negative for contaminating Mycoplasma 

infections using a Mycoplasma specific PCR. 

Chromatin immunoprecipitation (ChIP) 

Our ChIP protocol was based on the methods of Schmidt et al. 19  Four 15cm dishes of cells were fixed in 

formaldehyde for 10 minutes, before quenching the fixation with glycine.  Cells were harvested, lysed in a 

sarkosyl-containing lysis buffer, and sonicated using the Covaris E220 evolution Focused-Ultrasonicator to 

yield 100-300bp genomic DNA fragments.  5 μg of an antibody raised against H3K27ac (Diagenode) was 

incubated with blocked magnetic Dynabeads (Life Technologies) at 4°C for 4 hours.  Antibody-bead conjugates 

were incubated with 100 μg chromatin at 4°C overnight, with constant agitation.  Beads were washed 

extensively with RIPA buffer and then RNase and proteinase K (both Qiagen) treated.  DNA was then eluted 

from the beads in TE buffer and cleaned up using the QIAquick PCR Purification kit (Qiagen).  Two independent 

immunoprecipitations and one input sample were sequenced for each cell line and each sample was quality 

checked by site-specific qPCR prior to next generation sequencing (NGS).  
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Next generation sequencing  

ChIP libraries were constructed using the Kapa Hyper Library Preparation kit, according to manufacturer’s 

instructions.  Approximately 2/3 of the immunoprecipitated (IP) material was used as the starting amount.  For 

undiluted input samples, 100-300 ng of starting material was used. Construction was carried out according to 

manufacturer’s instructions using Bio NextFLex adapters diluted 1:50.  Final PCR on a portion of the adapter 

ligation was performed for 12 cycles.  Products were evaluated by the Agilent Bioanalyzer, using high sensitivity 

DNA chips.  ChIP libraries were quantified using Kapa Biosystems Illumina library quantification kit, then 12 

pooled for sequencing, which was carried out using single end reads with 75 cycles on a NextSeq 500 (with 

version 2 chemistry).  

Analysis of ChIP-seq data  

ChIP-seq data were processed using MACS2 with p value cutoff of 0.001.  The smaller of input or signal was 

linearly scaled to the same depth as the larger dataset.  In order to control the irreproducible discovery rate 

in ChIPseq analysis, we used IDR version 2.0 pipeline. 20  A standard IDR threshold p< 0.05 was applied. 

Functional annotation of variants 

We used shell scripts with bedtools (http://bedtools.readthedocs.org/en/latest/) to generate overlap data 

between all variants in each associated region including likely causal SNPs and bed file versions of all the data 

represented in Figure 2 and Supplementary Table 6.  In addition we included 3’UTRs, 5’UTRs, miRcode high 

confidence conserved microRNA target sites, high confidence microRNA target sites from microRNA.org, and 

all coding exons.  The overlap data thus obtained were converted to matrix form by means of python scripts.  

MicroRNA target sites were only considered that overlapped untranslated (UTR) gene regions. Exonic variants 

were further assessed for missense or nonsense mutations by Mutect software 21.  The NHGRI-EBI GWAS 

catalog was used to identify SNPs among the potentially causal set with other genome-wide signification 

associations (Supplementary table 14). 

Locus-specific tissue enrichment of variants 

H3K27 acetylation peaks were collated from public sources (for HeLa-S3, HCT116, UCSD Ovary, UCSD Sigmoid 

Colon, Colon Crypt) or from in-house data (IOSE4, IOSE11, FT33, FT246, EEC16, CaOV3, UWB1.289, OAW42, 

GFTR230, MCAS) (Supplementary table 5 and Supplementary table 16).  Overlaps were counted for the all SNPs 

against which genotypes were imputed in 1000 genomes for each H3K27Ac dataset.  The fraction of causal 

SNPs with overlaps was then tested for significance against this background for each cell type in the H3K27ac 

datasets using the hypergeometric distribution.  Finally, p values were adjusted for multiple comparisons using 

Bonferroni’s method.   
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Data availability 

OncoArray germline genotype data for OCAC studies will be available through dbGap 

(www.ncbi.nlm.nih.gov/gap).  Summary results are available from the Ovarian Cancer Association 

Consortium (http://ocac.ccge.medschl.cam.ac.uk/).  A subset of the OncoArray germline genotype data for 

the CIMBA studies will be made publically available through dbGAP.  The complete dataset will not be made 

publically available due to restraints imposed by the ethics committees of individual studies; requests for 

further data can be made to the Data Access Coordination Committee 

(http://cimba.ccge.medschl.cam.ac.uk/). 

ChipSeq data are available from the Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo), GEO accession 

number GSE68104. 
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