2,782 research outputs found

    Limitations of radical thiol-ene reactions for polymer-polymer conjugation

    Get PDF
    In this work, we report our findings on the use of radical thiol-ene chemistry for polymer-polymer conjugation. The manuscript combines the results from the Preparative Macromolecular Chemistry group from the Karlsruhe Institute of Technology (KIT) and the Polymer Chemistry Research group from Ghent University (UGent), which allowed for an investigation over a very broad range of reaction conditions. In particular, thermal and UV initiation methods for the radical thiol-ene process were compared. In the KIT group, the process was studied as a tool for the synthesis of star polymers by coupling multifunctional thiol core molecules with poly(n-butyl acrylate) macromonomers (MM), employing thermally decomposing initiators. The product purity and thus reaction efficiency was assessed via electrospray ionization mass spectrometry. Although the reactions with 10 or 5 equivalents of thiol with respect to macromonomer were successful, the coupling reaction with a one-to-one ratio of MM to thiol yielded only a fraction of the targeted product, besides a number of side products. A systematic parameter study such as a variation of the concentration and nature of the initiator and the influence of thiol-to-ene ratio was carried out. Further experiments with poly(styrene) and poly(isobornyl acrylate) containing a vinylic end group confirmed that thermal thiol-ene conjugation is far from quantitative in terms of achieving macromolecular star formation. In parallel, the UGent group has been focusing on photo-initiated thiol-ene chemistry for the synthesis of functional polymers on one hand and block copolymers consisting of poly(styrene) (PS) and poly (vinyl acetate) (PVAc) on the other hand. Various functionalization reactions showed an overall efficient thiol-ene process for conjugation reactions of polymers with low molecular weight compounds (∼90% coupling yield). However, while SEC and FT-IR analysis of the conjugated PS-PVAc products indicated qualitative evidence for a successful polymer-polymer conjugation, 1H NMR and elemental analysis revealed a low conjugation efficiency of about 23% for a thiol-to-ene ratio equal to one. Blank reactions using typical thiol-ene conditions indicated that bimolecular termination reactions occur as competitive side reactions explaining why a molecular weight increase is observed even though the thiol-ene reaction was not successful. The extensive study of both research groups indicates that radical thiol-ene chemistry should not be proposed as a straightforward conjugation tool for polymer-polymer conjugation reactions. Head-to-head coupling is a major reaction pathway, which interrupts the propagation cycle of the thiol-ene process. © 2010 Wiley Periodicals, Inc

    Animal modelling for inherited central vision loss.

    Get PDF
    Disease-causing variants of a large number of genes trigger inherited retinal degeneration leading to photoreceptor loss. Because cones are essential for daylight and central vision such as reading, mobility, and face recognition, this review focuses on a variety of animal models for cone diseases. The pertinence of using these models to reveal genotype/phenotype correlations and to evaluate new therapeutic strategies is discussed. Interestingly, several large animal models recapitulate human diseases and can serve as a strong base from which to study the biology of disease and to assess the scale-up of new therapies. Examples of innovative approaches will be presented such as lentiviral-based transgenesis in pigs and adeno-associated virus (AAV)-gene transfer into the monkey eye to investigate the neural circuitry plasticity of the visual system. The models reported herein permit the exploration of common mechanisms that exist between different species and the identification and highlighting of pathways that may be specific to primates, including humans

    ProFITS of maize: a database of protein families involved in the transduction of signalling in the maize genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maize (<it>Zea mays </it>ssp. <it>mays </it>L.) is an important model for plant basic and applied research. In 2009, the B73 maize genome sequencing made a great step forward, using clone by clone strategy; however, functional annotation and gene classification of the maize genome are still limited. Thus, a well-annotated datasets and informative database will be important for further research discoveries. Signal transduction is a fundamental biological process in living cells, and many protein families participate in this process in sensing, amplifying and responding to various extracellular or internal stimuli. Therefore, it is a good starting point to integrate information on the maize functional genes involved in signal transduction.</p> <p>Results</p> <p>Here we introduce a comprehensive database 'ProFITS' (Protein Families Involved in the Transduction of Signalling), which endeavours to identify and classify protein kinases/phosphatases, transcription factors and ubiquitin-proteasome-system related genes in the B73 maize genome. Users can explore gene models, corresponding transcripts and FLcDNAs using the three abovementioned protein hierarchical categories, and visualize them using an AJAX-based genome browser (JBrowse) or Generic Genome Browser (GBrowse). Functional annotations such as GO annotation, protein signatures, protein best-hits in the <it>Arabidopsis </it>and rice genome are provided. In addition, pre-calculated transcription factor binding sites of each gene are generated and mutant information is incorporated into ProFITS. In short, ProFITS provides a user-friendly web interface for studies in signal transduction process in maize.</p> <p>Conclusion</p> <p>ProFITS, which utilizes both the B73 maize genome and full length cDNA (FLcDNA) datasets, provides users a comprehensive platform of maize annotation with specific focus on the categorization of families involved in the signal transduction process. ProFITS is designed as a user-friendly web interface and it is valuable for experimental researchers. It is freely available now to all users at <url>http://bioinfo.cau.edu.cn/ProFITS</url>.</p

    Plant-RRBS, a bisulfite and next-generation sequencing-based methylome profiling method enriching for coverage of cytosine positions

    Get PDF
    Background: Cytosine methylation in plant genomes is important for the regulation of gene transcription and transposon activity. Genome-wide methylomes are studied upon mutation of the DNA methyltransferases, adaptation to environmental stresses or during development. However, from basic biology to breeding programs, there is a need to monitor multiple samples to determine transgenerational methylation inheritance or differential cytosine methylation. Methylome data obtained by sodium hydrogen sulfite (bisulfite)-conversion and next-generation sequencing (NGS) provide genome- wide information on cytosine methylation. However, a profiling method that detects cytosine methylation state dispersed over the genome would allow high-throughput analysis of multiple plant samples with distinct epigenetic signatures. We use specific restriction endonucleases to enrich for cytosine coverage in a bisulfite and NGS-based profiling method, which was compared to whole-genome bisulfite sequencing of the same plant material. Methods: We established an effective methylome profiling method in plants, termed plant-reduced representation bisulfite sequencing (plant-RRBS), using optimized double restriction endonuclease digestion, fragment end repair, adapter ligation, followed by bisulfite conversion, PCR amplification and NGS. We report a performant laboratory protocol and a straightforward bioinformatics data analysis pipeline for plant-RRBS, applicable for any reference-sequenced plant species. Results: As a proof of concept, methylome profiling was performed using an Oryza sativa ssp. indica pure breeding line and a derived epigenetically altered line (epiline). Plant-RRBS detects methylation levels at tens of millions of cytosine positions deduced from bisulfite conversion in multiple samples. To evaluate the method, the coverage of cytosine positions, the intra-line similarity and the differential cytosine methylation levels between the pure breeding line and the epiline were determined. Plant-RRBS reproducibly covers commonly up to one fourth of the cytosine positions in the rice genome when using MspI-DpnII within a group of five biological replicates of a line. The method predominantly detects cytosine methylation in putative promoter regions and not-annotated regions in rice. Conclusions: Plant-RRBS offers high-throughput and broad, genome- dispersed methylation detection by effective read number generation obtained from reproducibly covered genome fractions using optimized endonuclease combinations, facilitating comparative analyses of multi-sample studies for cytosine methylation and transgenerational stability in experimental material and plant breeding populations

    No Effect of One-Year Treatment with Indomethacin on Alzheimer's Disease Progression: A Randomized Controlled Trial

    Get PDF
    Contains fulltext : 71117.pdf (publisher's version ) (Open Access)BACKGROUND: The objective of this study was to determine whether treatment with the nonselective nonsteroidal anti-inflammatory drug (NSAID) indomethacin slows cognitive decline in patients with Alzheimer's disease (AD). METHODOLOGY/PRINCIPAL FINDINGS: This double-blind, randomized, placebo-controlled trial was conducted between May 2000 and September 2005 in two hospitals in the Netherlands. 51 patients with mild to moderate AD were enrolled into the study. Patients received 100 mg indomethacin or placebo daily for 12 months. Additionally, all patients received omeprazole. The primary outcome measure was the change from baseline after one year of treatment on the cognitive subscale of the AD Assessment Scale (ADAS-cog). Secondary outcome measures included the Mini-Mental State Examination, the Clinician's Interview Based Impression of Change with caregiver input, the noncognitive subscale of the ADAS, the Neuropsychiatric Inventory, and the Interview for Deterioration in Daily life in Dementia. Considerable recruitment problems of participants were encountered, leading to an underpowered study. In the placebo group, 19 out of 25 patients completed the study, and 19 out of 26 patients in the indomethacin group. The deterioration on the ADAS-cog was less in the indomethacin group (7.8+/-7.6), than in the placebo group (9.3+/-10.0). This difference (1.5 points; CI -4.5-7.5) was not statistically significant, and neither were any of the secondary outcome measures. CONCLUSIONS/SIGNIFICANCE: The results of this study are inconclusive with respect to the hypothesis that indomethacin slows the progression of AD

    Integrated Functions of Pax3 and Pax7 in the Regulation of Proliferation, Cell Size and Myogenic Differentiation

    Get PDF
    Pax3 and Pax7 are paired-box transcription factors with roles in developmental and adult regenerative myogenesis. Pax3 and Pax7 are expressed by postnatal satellite cells or their progeny but are down regulated during myogenic differentiation. We now show that constitutive expression of Pax3 or Pax7 in either satellite cells or C2C12 myoblasts results in an increased proliferative rate and decreased cell size. Conversely, expression of dominant-negative constructs leads to slowing of cell division, a dramatic increase in cell size and altered morphology. Similarly to the effects of Pax7, retroviral expression of Pax3 increases levels of Myf5 mRNA and MyoD protein, but does not result in sustained inhibition of myogenic differentiation. However, expression of Pax3 or Pax7 dominant-negative constructs inhibits expression of Myf5, MyoD and myogenin, and prevents differentiation from proceeding. In fibroblasts, expression of Pax3 or Pax7, or dominant-negative inhibition of these factors, reproduce the effects on cell size, morphology and proliferation seen in myoblasts. Our results show that in muscle progenitor cells, Pax3 and Pax7 function to maintain expression of myogenic regulatory factors, and promote population expansion, but are also required for myogenic differentiation to proceed

    Kinetic modelling of competition and depletion of shared miRNAs by competing endogenous RNAs

    Full text link
    Non-conding RNAs play a key role in the post-transcriptional regulation of mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact with their target RNAs through protein-mediated, sequence-specific binding, giving rise to extended and highly heterogeneous miRNA-RNA interaction networks. Within such networks, competition to bind miRNAs can generate an effective positive coupling between their targets. Competing endogenous RNAs (ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk. Albeit potentially weak, ceRNA interactions can occur both dynamically, affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA networks as a whole can be implicated in the composition of the cell's proteome. Many features of ceRNA interactions, including the conditions under which they become significant, can be unraveled by mathematical and in silico models. We review the understanding of the ceRNA effect obtained within such frameworks, focusing on the methods employed to quantify it, its role in the processing of gene expression noise, and how network topology can determine its reach.Comment: review article, 29 pages, 7 figure

    Immunologic and vascular biomarkers of mortality in critical COVID-19 in a South African cohort

    Get PDF
    Introduction: Biomarkers predicting mortality among critical Coronavirus disease 2019 (COVID-19) patients provide insight into the underlying pathophysiology of fatal disease and assist with triaging of cases in overburdened settings. However, data describing these biomarkers in Sub-Saharan African populations are sparse. Methods: We collected serum samples and corresponding clinical data from 87 patients with critical COVID-19 on day 1 of admission to the intensive care unit (ICU) of a tertiary hospital in Cape Town, South Africa, during the second wave of the COVID-19 pandemic. A second sample from the same patients was collected on day 7 of ICU admission. Patients were followed up until in-hospital death or hospital discharge. A custom-designed 52 biomarker panel was performed on the Luminex® platform. Data were analyzed for any association between biomarkers and mortality based on pre-determined functional groups, and individual analytes. Results: Of 87 patients, 55 (63.2%) died and 32 (36.8%) survived. We found a dysregulated cytokine response in patients who died, with elevated levels of type-1 and type-2 cytokines, chemokines, and acute phase reactants, as well as reduced levels of regulatory T cell cytokines. Interleukin (IL)-15 and IL-18 were elevated in those who died, and levels reduced over time in those who survived. Procalcitonin (PCT), C-reactive protein, Endothelin-1 and vascular cell adhesion molecule-1 were elevated in those who died. Discussion: These results show the pattern of dysregulation in critical COVID-19 in a Sub-Saharan African cohort. They suggest that fatal COVID-19 involved excessive activation of cytotoxic cells and the NLRP3 (nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3) inflammasome. Furthermore, superinfection and endothelial dysfunction with thrombosis might have contributed to mortality. HIV infection did not affect the outcome. A clinically relevant biosignature including PCT, pH and lymphocyte percentage on differential count, had an 84.8% sensitivity for mortality, and outperformed the Luminex-derived biosignature

    Current use and barriers and facilitators for implementation of standardised measures in physical therapy in the Netherlands

    Get PDF
    In many countries, the need for physical therapists to use standardised measures has been recognised and is recommended in clinical practice guidelines. Research has shown a lack of clinimetric knowledge and clinical application of measurement instruments in daily practice may hamper implementation of these guidelines. The aims of this study are 1) to investigate the current use of measurement instruments by Dutch physical therapists; 2) to investigate the facilitators and barriers in using measurement instruments

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future
    corecore