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Abstract

Introduction: Temporary occlusion of the hepatoduodenal ligament leads to an ischemic-reperfusion (IR) injury in the liver.
Levosimendan is a new positive inotropic drug, which induces preconditioning-like adaptive mechanisms due to opening of
mitochondrial KATP channels. The aim of this study was to examine possible protective effects of levosimendan in a rat
model of hepatic IR injury.

Material and Methods: Levosimendan was administered to male Wistar rats 1 hour (early pretreatment) or 24 hours (late
pretreatment) before induction of 60-minute segmental liver ischemia. Microcirculation of the liver was monitored by laser
Doppler flowmeter. After 24 hours of reperfusion, liver and blood samples were taken for histology, immuno- and enzyme-
histochemistry (TUNEL; PARP; NADH-TR) as well as for laboratory tests. Furthermore, liver antioxidant status was assessed
and HSP72 expression was measured.

Results: In both groups pretreated with levosimendan, significantly better hepatic microcirculation was observed compared
to respective IR control groups. Similarly, histological damage was also reduced after levosimendan administration. This
observation was supported by significantly lower activities of serum ALT (pearly = 0.02; plate = 0.005), AST (pearly = 0.02;
plate = 0.004) and less DNA damage by TUNEL test (pearly = 0.05; plate = 0.034) and PAR positivity (pearly = 0.02; plate = 0.04).
Levosimendan pretreatment resulted in significant improvement of liver redox homeostasis. Further, significantly better
mitochondrial function was detected in animals receiving late pretreatment. Finally, HSP72 expression was increased by IR
injury, but it was not affected by levosimendan pretreatment.

Conclusion: Levosimendan pretreatment can be hepatoprotective and it could be useful before extensive liver resection.
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Introduction

The liver is susceptible to numerous conditions associated with

hypoxia or hypoperfusion. During extensive liver resections,

temporary occlusion of the hepatoduodenal ligament – widely

known as Pringle’s maneuver - is often used to control bleeding

[1]. However, this maneuver can lead to ischemic-reperfusion (IR)

injury of the liver. Recently, a total exclusion of the hepatic inflow

is rarely necessary due to more advanced bleeding control and

operative techniques. However, inflow exclusion of the portal

vessels may be unavoidable if unexpected hemorrhage occurs

during traumatic liver injury or transplantation.

A large number of studies investigated various methods how to

attenuate IR injury in the liver. Of those, the most frequently

investigated is ischemic preconditioning (IP), which seems to be

the most effective, too [2], [3]. The hepatoprotective effect of IP

can be detectable in two distinct patterns (two windows of

protection) in terms of time course. The first, which is known as

‘‘early’’ preconditioning lasts for 1–2 hours. The second is usually

referred as ‘‘late’’ preconditioning, and it begins 24 hours

subsequent to the conditioning stimulus and lasts up to 48–72

hours thereafter [4], [5]. A better understanding of the underlying

signaling pathways made it possible to apply various pharmaco-

logical agents to induce hepatoprotection against IR experimen-

tally [6].

Mitochondria play key roles in cellular IR injury, due to their

crucial functions in energy production and programmed cell

death. A dominant factor in mitochondrial damage and subse-

quent dysfunction is the opening of the mitochondrial permeability

transition pores (MPTP) located in the inner membrane of the

organelle [7], [8]. The mitochondrial adenosine triphosphate-

dependent potassium channels (mito-KATP) have critical effect in

regulating mitochondrial volume as well as function [9]. Inhibition

of mito-KATP channels leads to suspension of the protective effect
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of IP, whereas channel-opening chemical compounds can provide

protection against IR injury similar to IP. It is assumed that mito-

KATP may be able to prevent long-term opening of MPTP, thus

preserving the integrity of the mitochondria and ensuring a better

cellular energy status. Based on the above, chemical induction of

mito-KATP opening can be a potential mechanism for pharma-

cological preconditioning [10], [11].

Levosimendan is an inodilator, cardioprotective drug used in

the management of acute heart failure. This agent exerts a positive

inotropic and an anti-stunning effect by increasing calcium

sensitivity of the myocardial contractile elements, as well as a

vasodilatator effect by opening sarcolemmal KATP channels in

vascular smooth muscle cells. Recent studies demonstrated that

levosimendan is able to open the mito-KATP channels, too [12].

These results prompted in vitro and in vivo studies on the anti-

ischemic effect of the drug, suggesting that levosimendan has a

direct cellular protective effect against IR injury [13]. Further,

levosimendan does not reduce splanchnic blood flow in contrast to

other positive inotropic agents, and it has a positive effect on small

bowel and liver perfusion, too [14] [15]. In addition, it was

demonstrated that levosimendan can protect against acute renal

failure in sepsis [16].

Therefore, we aimed to study the protective effect of

levosimendan against liver IR injury in an experimental rat model.

Materials and Methods

Animals
Male Wistar rats, weighing 250–280 g were used in the

experiments (Charles River Hungary Ltd.). The experimental

design was regulated by Act XXVIII of 1998 and Government

Decree 243/1998 (XII. 31), and approved by committee on

Animal Experimentation of Semmelweis University (license

number: 22.1/743/001/2007). The rats were kept on standard

chow and water ad libitum under specific, pathogen-free conditions

at 22–24uC. For 12 hours prior to surgery water was provided

only. Each experiment was started at the same time of the day to

avoid any possible effects of the circadian rhythm.

Pretreatment Protocol
Levosimendan pretreatment was applied 1 or 24 hours before

the induction of liver IR injury to mimic the two distinct patterns

in time for therapeutic effect of surgical ischemic preconditioning.

Levosimendan (SimdaxH, OrionPharma Ltd, Hungary) was

administered as a total dose of 54 mg/kg in 5 cycles (each cycle

for 5 min) dissolved in 5% glucose solution via a polyethylene

catheter placed into the left jugular vein (PolyE Polyethylene

Tubing, Harvard Apparatus, United States). A 10 minutes pause

was held between infusion cycles to create a pattern similar to IP.

Control and sham-operated animals received the vehicle in the

same pattern.

Operative Procedure
Animals were anaesthetized with intraperitoneal injections of

ketamine (75 mg/kg) and xylazine (7.5 mg/kg). Deep anesthesia

was maintained by intravenous administration of 25 mg/kg/h

ketamine and 2.5 mg/kg/h xylazine via a 22-gauge polyethylene

catheter placed into the right jugular vein. Another polyethylene

catheter was inserted into the femoral artery to monitor mean

arterial blood pressure (MAP) and heart rate (HR) (Kent Scientific

Corporation, Torrington, CT, USA). The animals were allowed to

breathe spontaneously during surgery. Intraoperative normother-

mia (36.5–37.5uC) was maintained by a heating pad connected to

a rectal thermometer.

A standardized surgical model was used for assessment of liver

IR damage as described previously [17], [18], [19]. (Figure 1)

Briefly, after median laparotomy and mobilization of the liver,

lobes III, IV, V were subjected to 60 min ischemia by clamping of

the biliovascular trunk using an atraumatic microvascular clip.

Immediately before reperfusion, the shunting lobes (I, II, VI, VII)

were removed, thus reperfusion affected only the post-ischemic

tissue (65–70% of the total hepatic mass). The microcirculation of

lobe V was monitored using laser Doppler flowmeter (LDF)

throughout the ischemic period and the first hour of reperfusion.

During IR periods, the abdomen was covered with a plastic wrap

to minimize uid loss via evaporation. At the end of the first hour of

reperfusion the abdomen was closed and the animals were

returned to their cages. After 24 hours reperfusion, animals were

anesthetized with intraperitoneal injection of ketamine (75 mg/kg)

and xylazine (7.5 mg/kg) and were sacrificed by exsanguinations

via right ventricular puncture, then blood and histological samples

were taken.

Experimental Groups
A total of 55 animals were randomly separated into two main

groups: (E) ‘‘early’’ (pretreatment 1 h before surgery) and (L)
‘‘late’’ (pretreatment 24 h before surgery).

(S) Sham-operated group (n=5): rats were subjected to

glucose pretreatment (as detailed in pretreatment protocol section)

and surgical procedures (as described above), except for induction

of liver ischemia, but including liver resection (lobes I, II, VI, VII).

(CE; CL) Control groups (n=5–5): rats – similarly to the

sham-operated group – were subjected to the surgical procedures

as well as to ‘‘early’’ or ‘‘late’’ levosimendan pretreatment.

(IRE; IRL) Ischemia-reperfusion groups (n=10–10):
animals underwent the entire surgical procedure, including the 60

minutes partial liver ischemia and liver resection followed by 24 h

of reperfusion.

(LE; LL) Levosimendan pretreated groups (n=10–10):
rats received levosimendan 1 h or 24 h prior to liver IR and were

operated similarly to the IR group.

Assessment of Hepatic Microcirculation
Liver microcirculation was evaluated by laser Doppler flowme-

ter (Moor Instruments Ltd, London, UK). The LDF probe was

placed at the same position on lobe V in every experiment. For

characterization of the individual ow graphs, a mathematical

correction was performed as described previously by us. To

compare the flow graphs, the integral of the reperfusion segment

of the graphs (RA: reperfusion area) and the maximal plateau of

the last 10 minutes of the reperfusion (PM: plateau maximum)

were used [20].

Histopathological Analysis
Methods of histopathological analysis were based on our

previous publications [18], [19]. Samples from excised lobes III,

IV, V were fixed in 4% neutral-buffered formalin for 24 hours,

dehydrated and embedded in paraffin. Sections of 3–5 mm
thickness were stained with hematoxylin and eosin (H&E). During

histological evaluation, the following changes were evaluated by an

experienced pathologist: (1) cellular swelling, (2) lipoid degenera-

tion, (3) sinusoidal congestion, (4) tissue hemorrhage, (5) leukocyte

infiltration, (6) necrosis and (7) signs of apoptosis. These

pathological changes were semiquantitatively scored as follows:

0: no alteration, +: ,10% of affected cells, ++: ,50% of affected

cells, +++: .50% of affected cells. Hence, the overall maximum

score was 21. The evaluating pathologist was blinded to the

experiment.
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Immunohistochemical Analysis
Terminal deoxynucleotidyl transferase-mediated dUTP nick

endlabeling (TUNEL) assay was used to further assess extent of

damaged areas. Commercially available kits were used (Chemicon

International Inc, Temecula, CA, USA), and histological slides

were counterstained with hematoxylin (Vector Laboratories,

Burlingame, CA, USA). The size of the demarcated TUNEL

positive areas was evaluated and expressed as a percentage of the

whole section.

Poly(ADP-ribose) polymerase (PARP) activation was measured

by immunohistochemical detection of the enzyme’s product,

poly(ADP-ribose) (PAR) with the use of mouse monoclonal anti-

poly(ADP-ribose) antibody (1:1000, Calbiochem), as described

previously [21]. Immunoreactivity was evaluated in the demar-

cated areas as well as in the surrounding areas; the ratio of PAR

positivity is shown as a percentage value.

Measurement of Serum ALT and AST
Blood samples were centrifuged (1050 g for 2610 min, at room

temperature) and the supernatant was collected. Serum samples

were frozen in liquid nitrogen and stored at 280uC. Alanine

aminotransferase (ALT) and aspartate aminotransferase (AST)

were quantified by standard spectrophotometry using automated

clinical chemistry analyzer (Hitachi 747, Hitachi Ltd, Tokyo,

Japan).

Measurement of Antioxidant Status
Total scavenger capacity in the plasma (blood samples were

centrifuged at 1050 g for 2610 min at 4uC) and liver homogenates

were measured in H2O2/OHN luminol microperoxidase system

using Lumat LB 9051 luminometer (Lumat; Berthold, Windbad,

Germany) [22]. The chemiluminescence light intensity - given in

relative light units (RLU) - was proportional to the concentration

of free radicals. The results were expressed as a percentage

compared to the background (RLU %). Protein content was

measured using Lowry’s method [23].

Free SH-groups were detected using the Sedlak method based

on Ellmann reaction [24]. The results show the protein-related

reducing power in mmol/L. The H-donating ability, reflecting the

non-protein-bound antioxidant state of the samples, was measured

in the presence of a 1,1-diphenyl-2-picryl-hydrasyl radical at

517 nm using Blois’ method as modified by Blázovics et al [25],

[26]. The results were expressed in percentage of inhibition. The

samples’ reducing power (RP) was assessed using Oyaizu’s method

[27]. The changes in absorbance caused by transformation of Fe3+

into Fe2+ were detected at 700 nm and compared with the changes

of ascorbic acid (AA). The spectrophotometric measurements were

carried out with Jasco V-550.

Luminol, microperoxidase, hydrogen peroxide were purchased

from Sigma (St. Louis, MO, USA), the other chemical reagents

were obtained from Reanal Chemical Co. (Budapest, Hungary).

Liver Tissue Viability
Parts of lobe V were frozen in liquid nitrogen and stored at

280uC. Five mm thick cross-sections were made. Slides were

incubated for 30 min at 37uC in nitroblue tetrazolium (NBT,

18 mg/l) and NADH (150 mg/l) reagents (Sigma-Aldrich Inc,

St. Louis, MO, USA) diluted in 0.05 M TRIS buffer (pH 7.6).

Unused tetrazolium reagent was removed by ascending (30%,

60% and 90%), followed by descending concentrations of

acetone [28]. The amount of colored reaction product was

directly proportional to the absolute number of the functional

mitochondrial NADH-dehydrogenase enzyme complex, it could

therefore be used to determine mitochondrial integrity and cell

viability.

Viability was assessed by quantitative evaluation of the reaction.

Ten random fields were microphotographed. The amount of

generated reaction product was determined using Leica Qwin Pro

image analysis software (Leica Microsystems Imaging Solutions

Ltd, Cambridge, UK). The obtained amount was then compared

to the total area. All viewing fields were evaluated separately.

Regarding whole sample, the ratio was calculated as a ten-field-

average and expressed as a percentage of NBT positivity of simple

sham-operated animals.

Heat Shock Protein (HSP) 72 Expression
HSP72 expression of the liver was measured from tissue

homogenate using Western blot analysis [29]. The bands were

visualized by chemiluminescence technique. Detection and

quantitative analysis of results were achieved using ImageJ

software (NIH, Bethesda, MD, USA).

Figure 1. Liver lobes III, IV, V were subjected to 60 min ischemia by clamping of the biliovascular trunk using an atraumatic
microvascular clip (asterix). Immediately before reperfusion, the shunting lobes (I, II, VI, VII) were removed, thus reperfusion affected only the
post-ischemic tissue.
doi:10.1371/journal.pone.0073758.g001
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Statistical Analysis
Values were expressed as means 6 SD. Statistical significance

was determined by one-way analysis of variances (ANOVA)

followed by Scheffer’s post-hoc test. A p,0.05 confidence interval

was considered as statistically significant.

Results

Hemodynamic Parameters
Immediately (within 1 min) after the levosimendan pretreat-

ment, there was a significant decrease in the mean arterial blood

pressure (p = 0.044) and an increase in the heart rate (p = 0.049) as

compared to groups receiving glucose only. The blood pressure

measured directly before the ischemic period was similar to the

initial value in the ‘‘late’’ groups.

Hemodynamic parameters did not change significantly in any of

the experimental groups throughout the 60 minutes of ischemia.

After induction of reperfusion, tachycardia and a considerable

reduction of MAP (pIRE = 0.047; pIRL = 0.033) were observed in

the IR animals (IRE; IRL). 5–10 minutes after the onset of

reperfusion blood pressure normalized slowly, but it did not reach

the pre-ischemic values completely. In contrast, reperfusion did

not cause further significant drop in the blood pressure in the

levosimendan pretreated groups, furthermore, MAP reached the

baseline level at the end of the first hour of reperfusion.

Microcirculation Measured by LDF
Both ‘‘late’’ and ‘‘early’’ levosimendan pretreatments caused

significant improvement (RA: pearly = 0.0012; plate = 0.0010; PM:

pearly = 0.0019; plate = 0.0007) in the microcirculation of the liver

compared with the respective IR groups (Figures 2–3 & Table 1).

Histopathological Analysis
There was no pathological change detectable in the ‘‘early’’

control group (CE), except occasional mild sinusoidal dilatation

(total score: 2.1). In the IR group (IRE), however, necrotic areas,

substantial periportal lymphocyte infiltration and tissue hemor-

rhage were found (total score: 11.6). In the levosimendan

pretreated group (LE) significantly less focal necrosis was seen

(total score: 7.8; p= 0.043). Tissue hemorrhage was not typical and

leukocyte infiltration was less extensive.

In the ‘‘late’’ control group (CL), increased sinusoidal dilatation

and occasional perivascular edema were observed when compared

with the sham-operated and ‘‘early’’ control groups (total score:

4.8). In the IR group (IRL) extensive, predominantly panlobular

necrosis was detected, which was associated with significant

leukocyte infiltration and tissue hemorrhage (total score: 12.3).

The levosimendan pretreated group (LL) was characterized by

focal necrosis, milder tissue hemorrhage and less severe inflam-

matory cell infiltration (total score: 7.9; p= 0.041) (Figure 4).

Immunohistochemical Analysis
After liver injury induced by IR, almost exclusively demarcated

areas of positive cells were observable with TUNEL immunohis-

tochemical staining. After levosimendan pretreatment, however, a

significant reduction of the demarcated areas was seen both in the

‘‘early’’ and the ‘‘late’’ groups, when compared to the corre-

sponding IR groups (pearly = 0.05; plate = 0.034).

Furthermore, PAR-positive area was significantly reduced, too,

after ‘‘late’’ levosimendan pretreatment compared to the ‘‘late’’ IR

group (plate = 0.04) (Table 2).

Measurements of Serum ALT and AST
Serum ALT activity in the IR groups was significantly higher

than the sham-operated groups. However, serum ALT activity was

significantly lower in the levosimendan pretreated groups than the

IR groups (pearly = 0.02; plate = 0.005).

Serum AST activity in the ‘‘late’’ IR group (IRL) was higher

than the ‘‘early’’ IR group (IRE). However, ‘‘late’’ levosimendan

pretreatment substantially reduced serum AST activity

(plate = 0.04) (Figure 5).

Measurement of Antioxidant Status
Free radical concentrations were significantly increased in the

IR groups compared with sham operated and control animals.

‘‘Early’’ levosimendan pretreatment resulted in significantly lower

RLU% values in the serum after 24 hours of reperfusion when

compared with the IR groups (pearly = 0.03).

Levosimendan pretreatment led to a significant improvement in

the reducing power of the serum compared with the IR groups

(pearly = 0.01; plate = 0.03). In case of the liver, the improvement

was significant only with the use of the ‘‘early’’ pretreatment

protocol (pearly = 0.01).

Concentration of free SH-groups was significantly decreased in

the liver in the levosimendan pretreated groups (pearly = 0.02;

plate = 0.03), whereas in serum samples only an improving

tendency could be seen.

The non-protein-bound antioxidant capacity indicator H-

donating ability showed significant improvement in the serum

after ‘‘early’’ levosimendan pretreatment as compared with the IR

groups (pearly = 0.04) (Table 3).

Liver Tissue Viability
In the ‘‘late’’ control group, liver tissue was significantly less

viable then sham-operated animals, and a similar tendency was

observed in the ‘‘early’’ control group (S: 100%; CE: 82%; CL:

Table 1. Microcirculatory data of the liver.

Microcirculatory parameters Experimental groups

‘‘early’’ pretreatment ‘‘late’’ pretreatment

S CE IRE LE CL IRL LL

Reperfusion area (RA) % 95.765 97.3622 23.9612 47.2*66 81.3614 22.8610 55.6*618

Plateau maximum (PM) % 95.665 100624 37.9616 66.8*69 81.8612 28.469 67.1*622

S: sham-operated; CE: ‘‘early’’ control; IRE: ‘‘early’’ ischemia-reperfusion; LE: ‘‘early’’ levosimendan pretreated; CL: ‘‘late’’ control; IRL: ‘‘late’’ ischemia-reperfusion; LL: ‘‘late’’
levosimendan pretreated.
*p,0.05 versus the respective IR group.
doi:10.1371/journal.pone.0073758.t001
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77%). Further, liver tissue turned out to be significantly less viable

in the ‘‘late’’ IR control group compared to the ‘‘early’’

counterpart (IRL: 23%; IRE: 51%; p= 0.0001). Importantly,

levosimendan pretreatment administered 24 hours before surgery

significantly increased the proportion of NBT-positive areas (LL:

42%; plate = 0.003), while ‘‘early’’ administration of levosimendan

a similar effect, too (Figure 6).

HSP72 Expression
In both IR groups a substantial increase in liver HSP72

expression was observed compared with the sham-operated group.

Neither the ‘‘early’’, nor the ‘‘late’’ levosimendan pretreatment

resulted in changes of the IR-induced HSP72 expression pattern

(Figure 7).

Discussion

Liver IR injury develops primarily during transplantation,

traumatic injury or extensive liver resection due to a temporary

occlusion of the hepatoduodenal ligament. Several methods have

been tried to attenuate or prevent IR injury, but no significant

success has been achieved until Murry published a new pioneering

technique called ischemic preconditioning [30]. A better under-

standing of the underlying signaling mechanisms of IR-related

pathological changes opened new perspectives in research focusing

on treatment strategies for IR liver injury.

Levosimendan is a unique positive inotropic molecule in terms it

does not reduce splanchnic circulation as well as it has anti-

ischemic properties by opening mito-KATP channels [15] [31].

Figure 2. Hepatic microcirculation after ‘‘early’’ levosimendan pretreatment. The blood flow of sham-operated (S) and ‘‘early’’ control
group (CE) did not change significantly. There was a decline of the ux in groups subjected to IR (IRE; LE). Levosimendan pretreatment (LE) significantly
improved liver microcirculation compared to the IRE group during reperfusion. Values are expressed as means. * p,0.05 versus IRE group. n = 5 in
sham-operated (S) and control groups (CE); n = 10 in IR (IRE) and levosimendan pretreated groups (LE).
doi:10.1371/journal.pone.0073758.g002

Figure 3. Hepatic microcirculation after ‘‘late’’ levosimendan pretreatment. In the ‘‘late’’ control group (CL) a reduction of blood flow was
observed in comparison to sham-operated animals (S), but the difference was not significant. However, there was a significant decline of the ux in
groups subjected to IR (IRL; LL). Levosimendan pretreatment (LL) caused significant improvement in the microcirculation of the liver compared with
the IRL group. Values are expressed as means. * p,0.05 versus IRL group. n = 5 in sham-operated (S) and control group (CL); n = 10 in IR (IRL) and
levosimendan pretreated group (LL).
doi:10.1371/journal.pone.0073758.g003
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Hence, we examined the effect of levosimendan in a rat liver IR

model.

Microcirculation is a crucial factor in IR liver injury. Changes in

the microcirculatory blood flow usually precede the development

of parenchymal abnormalities [32]. Microcirculatory changes may

prolong ischemic time and enlarge irreversibly damaged areas. In

addition, it can trigger progressive inflammatory response [33].

We demonstrated previously that improvement in microcircula-

tion reduced hepatic injury [20]. Therefore, the quality of tissue

microcirculation may indicate the severity of organ damage and

the efficacy of any intervention. Literature data suggested that

levosimendan improves microcirculatory blood flow of the

splanchnic area in septic rats [34]. In consistent with the above,

our results showed that levosimendan pretreatment applied 1 or 24

hours prior to surgery resulted in highly significant improvement

in liver microcirculation compared with the corresponding IR

groups.

In terms of H&E-stained histological slides, important differ-

ences were detected between the experimental groups. In the IR

groups, large and often confluent areas of necrosis was observed,

which was accompanied by significant hemorrhage and leukocyte

infiltration. Meanwhile the levosimendan pretreated animals

showed dramatically less cell death, which was mostly focal.

Consistently, tissue bleeding was not typical and leukocyte

infiltration was less extensive, too. The moderate tissue damage

of pretreated animals was supported by a significant decrease in

serum ALT and AST activities.

During IR liver injury, cell death is characteristic for

hepatocytes and sinusoidal endothelial cells predominantly.

Theoretically, cell death can happen as oncotic necrosis and

apoptosis. Terminal deoxynucleotidyl transferase-mediated deox-

yuridine triphosphate nick-end labeling (TUNEL) - commonly

used to determine single- or double-strand DNA breaks – typically

characterizes apoptotic cell death. However, DNA degradation

occurs during necrosis, too, especially during IR damage due to

nucleases released from inflammatory cells [35]. Therefore, this

assay is not reliable to demonstrate apoptosis specifically, it is

rather suitable to determine the extent of DNA damage as a

cytotoxic consequence of IR [36]. Consistently, diffuse TUNEL

positive areas were detected in the IR groups. These TUNEL

positive areas corresponded to the extensively damaged parts seen

in H&E-stained slides, where apoptosis and necrosis are likely to

Figure 4. Representative H&E-stained liver sections. In the control groups (A: ‘‘early’’ control; D: ‘‘late’’ control) mild tissue injury and sinusoidal
dilatation were observed. In the IR groups (B: ‘‘early’’ IR; E: ‘‘late’’ IR) confluent necrotic areas were detected accompanied by significant leukocyte
infiltration and tissue hemorrhage. The levosimendan pretreated groups (C: ‘‘early’’ levosimendan pretreatment; F: ‘‘late’’ levosimendan pretreatment)
were characterized by focal necrosis associated with milder tissue hemorrhage and less severe leukocyte infiltration.
doi:10.1371/journal.pone.0073758.g004

Table 2. Immunohistochemical analysis.

Measured parameters Experimental groups

‘‘early’’ pretreatment ‘‘late’’ pretreatment

S CE IRE LE CL IRL LL

TUNEL positivity 0 0 5.760.9 1.260.6 0 15.761.3 1.260.7

in the demarcated area (%)

PAR positivity – – 6.360.8 1.560.3 – 17.361.9 1.660.5

in the demarcated area (%)

S: sham-operated; CE: ‘‘early’’ control; IRE: ‘‘early’’ ischemia-reperfusion; LE: ‘‘early’’ levosimendan pretreated; CL: ‘‘late’’ control; IRL: ‘‘late’’ ischemia-reperfusion; LL: ‘‘late’’
levosimendan pretreated.
doi:10.1371/journal.pone.0073758.t002

Levosimendan against Liver IR Injury

PLOS ONE | www.plosone.org 6 September 2013 | Volume 8 | Issue 9 | e73758



occur. After ‘‘early’’ and ‘‘late’’ levosimendan pretreatment, a

significant decrease was observed in the size of TUNEL positive

areas. These results are supported by literature data showing anti-

apoptotic properties of levosimendan in other organs like the heart

and kidney [37], [38]. Low level of DNA cleavage is supported by

PAR-positivity of the demarcated region as well. PARP activity is a

marker of DNA damage and repair, which is characteristic to

excessive DNA damage [39]. PAR-positivity suggested a signifi-

cantly lower DNA- and cell injury in the ‘‘late’’ levosimendan

pretreated groups.

The ischemic insult leads to sublethal cell injury, which is

exacerbated by acute generation of reactive oxygen species

following reoxygenation. Free radicals cause direct tissue injury

and initiate a number of noxious cellular responses leading to the

formation of proinflammatory mediators and infiltration and

activation of macrophages, neutrophils and lymphocytes, which

may further enhance oxidative stress and tissue injury [40].

Previous studies demonstrated that administration of levosimen-

dan exerts a beneficial effect on immune response and redox-

homeostatsis [2], [41]. We demonstrated that levosimendan

pretreatment decreased the level of free radicals and improve

the antioxidant status of the liver in the ‘‘late’’ and ‘‘early’’ groups,

too. In addition, histopathological analysis showed less severe

inflammatory cell infiltration in the levosimendan pretreated

groups.

Our results suggest that levosimendan pretreatment is associated

with an attenuation hepatocyte damage during and after warm

ischemia. This phenomenon may be a result of pharmacological

preconditioning induced by levosimendan.

Rapidly increased expressions of HSPs are induced by various

cellular injuries – such as IR – which play an important role in

protective mechanisms of IP [42]. HSPs are intra-cellular

chaperones protecting the function as well as the structure of

injured proteins. Kume et al. showed that the induction of HSP72

in the liver contributes to the reduction of IR injury irrespective of

the type of preconditioning [43]. Hence, we decided to determine

the HSP72 expression in the liver. We could not detect, however,

significant differences between the levosimendan pretreated and

the IR groups. Therefore, HSP72 is unlikely to play an important

part in hepatoprotective pharmacological preconditioning induced

by levosimendan.

Figure 5. Serum level of ALT and AST. Ischemic-reperfusion injury
of the liver led to an increase in serum activities of alanine
aminotransferase (ALT) and aspartate aminotransferase (AST).A: Serum
levels of ALT significantly decreased in the levosimendan pretreated
groups (LE, LL) compared to the corresponding IR groups (IRL, IRE) B:
Raised AST activity in the ‘‘late’’ IR group (IRL) were significantly higher
than in the ‘‘early’’ IR group (IRE). ‘‘Late’’ levosimendan pretreatment
significantly reduced the serum activity of AST. Data are shown as
means+SEM, * p,0.05 versus ‘‘late’’ IR group; ¤ ,0.05 versus ‘‘early’’ IR
group; $ p,0.05 versus ‘‘late’’ control group; & p,0.05 versus ‘‘early’’
control group; # p,0.05 versus ‘‘early’’ IR group. n = 5 in sham-
operated (S) and control groups (CE, CL); n = 10 in IR (IRL, IRE) and
levosimendan pretreated groups (LE, LL).
doi:10.1371/journal.pone.0073758.g005

Table 3. Measurement of antioxidant status.

Measurement Sample Experimental groups

S ‘‘early’’ pretreatment ‘‘late’’ pretreatment

CE IRE LE P* CL IRL LL P**

Total scavenger
capacity (RLU%)

serum 4.3861.68 4.462.15 12.0762.77 8.5162.62 0.03 3.7763.03 9.6962.35 6.7163.74 0.06

liver 21.2561.95 28.35618.55 82.15613.24 66.7364.63 0.06 24.3966.74 75.12617.15 56.3467.34 0.07

Reducing power serum (mmol
AA/ml)

– 0.3860.23 0.5460.13 0.7960.20 0.01 1.1360.53 0.6660.34 1.0860.13 0.03

liver (mmol
AA/g prot)

393.6645.3 266.4634.0 148.6641.1 220.1622.5 0.01 317.8616.6 207.4627.5 248.7636.4 0.06

Free SH-groups
(mmol/l)

serum – 0.04360.018 0.02360.007 0.03060.007 0.06 0.04560.006 0.02360.009 0.03460.019 0.07

liver 0.07760.02 0.06360.015 0.04160.011 0.06160.018 0.02 0.05560.008 0.04360.016 0.05160.012 0.03

H-donating ability serum – 64.0168.95 40.6669.38 51.2867.03 0.04 58.0169.20 38.7568.02 47.83611.05 0.08

liver 44.3564.95 40.9466.33 14.7762.61 18.6863.52 0.06 45.3766.96 18.7462.49 23.1364.48 0.07

S: sham-operated; CE: ‘‘early’’ control; IRE: ‘‘early’’ ischemia-reperfusion; LE: ‘‘early’’ levosimendan pretreated; CL: ‘‘late’’ control; IRL: ‘‘late’’ ischemia-reperfusion; LL: ‘‘late’’
levosimendan pretreated; AA: ascorbic acid;
*IRE versus LE;
**IRL versus LL.
doi:10.1371/journal.pone.0073758.t003

Levosimendan against Liver IR Injury

PLOS ONE | www.plosone.org 7 September 2013 | Volume 8 | Issue 9 | e73758



Literature data demonstrate that the activation of the reperfu-

sion injury salvage kinase (RISK) pathway – a common target for

IP - plays an important role in the anti-ischemic and anti-apoptotic

effect of levosimendan [37]. In addition, levosimendan induces

nitric oxide (NO) production [44] and is able to open KATP

channels directly without the activation of the conventional

Figure 6. Liver tissue viability. Nitroblue tetrazolium (NBT) intensity of the ‘‘late’’ and ‘‘early’’ control animals was lower compared to the sham-
operated group (S), but the difference was significant in the ‘‘late’’ category (CL) only. After IR injury, number of functioning mitochondria further
decreased. NBT positivity was significantly lower in the ’’late’’ IR group (IRL) than in the ’’early’’ IR group (IRE). However, ‘‘late’’ levosimendan
pretreatment was able to enhance significantly the number of viable mitochondria. The data are presented as means+SEM. ¤ ,0.05 versus ‘‘early’’
control group; &p,0.05 versus sham-operated group; $ p,0.05 versus ‘‘early’’ IR group; #p,0.05 versus ‘‘late’’ control group; * p,0.05 versus ‘‘late’’
IR group. n = 5 in sham-operated (S) and control groups (CE, CL); n = 10 in IR (IRL, IRE) and levosimendan pretreated groups (LE, LL).
doi:10.1371/journal.pone.0073758.g006

Figure 7. Liver HSP72 expression. A: Representative Western blotting for HSP72 in sham-operated group (S), control groups (CE, CL), IR groups
(IRE, IRL) and levosimendan pretreated groups (LE, LL). B: Quantitative results of Western blotting. A significant increase in liver HSP72 expression was
observed in the IR groups as well as in the levosimendan pretreated groups compared to the sham-operated group. Levosimendan pretreatment did
not result in changes of HSP72 expression pattern. Data are presented as means+SEM, * p,0.05 versus sham-operated group. n = 5 in sham-operated
(S) and control groups (CE, CL); n = 10 in IR (IRL, IRE) and levosimendan pretreated groups (LE, LL).
doi:10.1371/journal.pone.0073758.g007
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preconditioning signaling pathway [45]. The possible roles of NO

and KATP channels are confirmed by examination with 5-HD (a

specific mito-KATP channel blocker) and Nv-nitro-l-arginine

methyl ester (l-NAME, a nonspecific NO synthase inhibitor),

which ceased the beneficial effect of levosimendan [46]. The above

mentioned IP-like effects of levosimendan are related to the

stabilization of the mitochondria. Maintenance of mitochondrial

integrity in hepatocytes is supported by our study, as well. The

NADH-tetrazolium enzymehistochemical analysis showed signif-

icantly better mitochondrial function and a minor damage only of

the energy-balance when we compared ‘‘late’’ pretreatment

animals to the corresponding IR group.

The hepatoprotective effect of levosimendan may also be the

consequence of the hemodynamic effect of the drug. Our results,

however, failed to support this hypothesis due to insufficient data

on hemodynamics We could demonstrate that the applied dose of

levosimendan induced a typical cardiac effect only: an increase in

heart rate and a decrease in blood pressure, similarly to relevant

literature data [47]. Interestingly, reperfusion-induced hypoten-

sion was relatively lower and the restoration of the hemodynamic

parameters was more effective after levosimendan pretreatment

shows that it may be worth conducting further investigations along

these lines.

Levosimendan pretreatment was applied in two therapeutic

time points in order to mimic the time course of protection

following ischemic preconditioning. We found that hepatocellular

injury was more severe in the ‘‘late’’ experimental groups. This

was supported by histological, immunohistochemical analyses as

well as measurements of AST, ALT levels and tissue viability of

the liver. Major perioperative stress may explain this phenomenon

as a consequence of the two-stage operation. Nevertheless, the

‘‘late’’ levosimendan pretreatment resulted in a more significant

improvement in terms of hepatocellular injury as compared with

the ‘‘early’’ treatment. This may be explained by the fact that the

maximal hemodynamic response after administration of levosi-

mendan can be expected at the end of the first or second day [43].

Conclusions

We examined the effect of levosimendan pretreatment in a liver

IR model in vivo. Our results suggest that levosimendan can be

potentially effective in the prevention hepatic IR injury. Further

experiments should also confirm the beneficial effect of levosi-

mendan prior to consolidation of possible application before

extensive liver resection or transplantation in the future.
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Romics for grammatical correction of the manuscript.

Disclosures

We thank Orion Pharma for covering the publication fee. Orion

Pharma had no influence on this study and publication.

Author Contributions

Conceived and designed the experiments: RS AS LH. Performed the

experiments: PO RS ZT AF. Analyzed the data: OR DG AF ZB ZR.

Contributed reagents/materials/analysis tools: GL VH ZB ZR. Wrote the

paper: PO RS AF.

References

1. Pringle JH (1908) V. Notes on the Arrest of Hepatic Hemorrhage Due to

Trauma. Ann Surg 48: 541–549.

2. Gurusamy KS, Kumar Y, Pamecha V, Sharma D, Davidson BR (2009)

Ischaemic pre-conditioning for elective liver resections performed under vascular

occlusion. Cochrane Database Syst Rev: CD007629.

3. Gurusamy KS, Kumar Y, Sharma D, Davidson BR (2008) Ischaemic

preconditioning for liver transplantation. Cochrane Database Syst Rev:
CD006315.

4. Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, et al. (1993) Delayed effects

of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 72:
1293–1299.

5. Van Winkle DM, Thornton JD, Downey DM, Downey JM (1991) The natural

history of preconditioning: cardioprotection depends on duration of transient
ischemia and time to subsequent ischemia. Coronary Artery Disease 2: 613–620.

6. Abu-Amara M, Gurusamy KS, Glantzounis G, Fuller B, Davidson BR (2009)

Pharmacological interventions for ischaemia reperfusion injury in liver resection
surgery performed under vascular control. Cochrane Database Syst Rev:

CD008154.

7. Teoh NC, Farrell GC (2003) Hepatic ischemia reperfusion injury: pathogenic

mechanisms and basis for hepatoprotection. J Gastroenterol Hepatol 18: 891–

902.

8. Theruvath TP, Snoddy MC, Zhong Z, Lemasters JJ (2008) Mitochondrial

permeability transition in liver ischemia and reperfusion: role of c-Jun N-

terminal kinase 2. Transplantation 85: 1500–1504.

9. Pollesello P, Mebazaa A (2004) ATP-dependent potassium channels as a key

target for the treatment of myocardial and vascular dysfunction. Curr Opin Crit

Care 10: 436–441.

10. Honda HM, Korge P, Weiss JN (2005) Mitochondria and ischemia/reperfusion

injury. Ann N Y Acad Sci 1047: 248–258.

11. Tsukamoto O, Asanuma H, Kim J, Minamino T, Takashima S, et al. (2005) A

role of opening of mitochondrial ATP-sensitive potassium channels in the infarct

size-limiting effect of ischemic preconditioning via activation of protein kinase C
in the canine heart. Biochem Biophys Res Commun 338: 1460–1466.

12. Kopustinskiene DM, Pollesello P, Saris NE (2001) Levosimendan is a

mitochondrial K(ATP) channel opener. Eur J Pharmacol 428: 311–314.

13. De Luca L, Sardella G, Proietti P, Battagliese A, Benedetti G, et al. (2006)

Effects of levosimendan on left ventricular diastolic function after primary

angioplasty for acute anterior myocardial infarction: a Doppler echocardio-
graphic study. J Am Soc Echocardiogr 19: 172–177.

14. Woolsey CA, Coopersmith CM (2006) Vasoactive drugs and the gut: is there
anything new? Curr Opin Crit Care 12: 155–159.

15. Pagel PS, Hettrick DA, Warltier DC (1996) Influence of levosimendan,

pimobendan, and milrinone on the regional distribution of cardiac output in

anaesthetized dogs. Br J Pharmacol 119: 609–615.

16. Zager RA, Johnson AC, Lund S, Hanson SY, Abrass CK (2006) Levosimendan

protects against experimental endotoxemic acute renal failure. Am J Physiol

Renal Physiol 290: F1453–1462.

17. Kupcsulik P, Stekker K, Nemeth M (1977) Effect of ischaemia on the enzyme

activity of the hepatic tissue. Res Exp Med (Berl) 170: 259–270.

18. Stangl R, Szijarto A, Onody P, Tamas J, Tatrai M, et al. (2011) Reduction of

liver ischemia-reperfusion injury via glutamine pretreatment. J Surg Res 166:

95–103.

19. Szijarto A, Hahn O, Batmunkh E, Stangl R, Kiss A, et al. (2007) Short-term

alanyl-glutamine dipeptide pretreatment in liver ischemia-reperfusion model:

effects on microcirculation and antioxidant status in rats. Clin Nutr 26: 640–648.

20. Szijarto A, Hahn O, Lotz G, Schaff Z, Madarasz E, et al. (2006) Effect of

ischemic preconditioning on rat liver microcirculation monitored with laser

Doppler flowmetry. J Surg Res 131: 150–157.

21. Radovits T, Zotkina J, Lin LN, Bomicke T, Arif R, et al. (2007) Poly(ADP-

Ribose) polymerase inhibition improves endothelial dysfunction induced by

hypochlorite. Exp Biol Med (Maywood) 232: 1204–1212.

22. Hatano T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and

other constituents in licorice root: their relative astringency and radical

scavenging effects. Chem Pharm Bull (Tokyo) 36: 2090–2097.

23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement

with the Folin phenol reagent. J Biol Chem 193: 265–275.

24. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein

sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25: 192–205.

25. Blazovics A, Kovacs A, Lugasi A, Hagymasi K, Biro L, et al. (1999) Antioxidant

defense in erythrocytes and plasma of patients with active and quiescent Crohn

disease and ulcerative colitis: a chemiluminescent study. Clin Chem 45: 895–

896.

26. Blois S (1955) A note on free radical formation in biologically occurring

quinones. Biochim Biophys Acta 18: 165.

27. Oyaizu M (1986) Studies on products of browning reaction prepared from

glucosamine. Jpn J Nutr 44: 307–315.

28. Dubowitz V, Sewry C (2007) Muscle Biopsy: A Practical Approach. London:

Saunders Elsevier.

29. Rakonczay Z Jr, Boros I, Jarmay K, Hegyi P, Lonovics J, et al. (2003) Ethanol

administration generates oxidative stress in the pancreas and liver, but fails to

induce heat-shock proteins in rats. J Gastroenterol Hepatol 18: 858–867.

Levosimendan against Liver IR Injury

PLOS ONE | www.plosone.org 9 September 2013 | Volume 8 | Issue 9 | e73758



30. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a

delay of lethal cell injury in ischemic myocardium. Circulation 74: 1124–1136.
31. Pollesello P, Papp Z (2007) The cardioprotective effects of levosimendan:

preclinical and clinical evidence. J Cardiovasc Pharmacol 50: 257–263.

32. Tapuria N, Junnarkar SP, Dutt N, Abu-Amara M, Fuller B, et al. (2009) Effect
of remote ischemic preconditioning on hepatic microcirculation and function in

a rat model of hepatic ischemia reperfusion injury. HPB (Oxford) 11: 108–117.
33. Ito H (2006) No-reflow phenomenon and prognosis in patients with acute

myocardial infarction. Nat Clin Pract Cardiovasc Med 3: 499–506.

34. Garcia-Septien J, Lorente JA, Delgado MA, de Paula M, Nin N, et al. (2010)
Levosimendan increases portal blood flow and attenuates intestinal intramucosal

acidosis in experimental septic shock. Shock 34: 275–280.
35. Jaeschke H (1998) Mechanisms of reperfusion injury after warm ischemia of the

liver. J Hepatobiliary Pancreat Surg 5: 402–408.
36. Jaeschke H, Lemasters JJ (2003) Apoptosis versus oncotic necrosis in hepatic

ischemia/reperfusion injury. Gastroenterology 125: 1246–1257.

37. Soeding PF, Crack PJ, Wright CE, Angus JA, Royse CF (2011) Levosimendan
preserves the contractile responsiveness of hypoxic human myocardium via

mitochondrial K(ATP) channel and potential pERK 1/2 activation.
Eur J Pharmacol 655: 59–66.

38. Grossini E, Molinari C, Pollesello P, Bellomo G, Valente G, et al. (2012)

Levosimendan protection against kidney ischemia/reperfusion injuries in
anesthetized pigs. J Pharmacol Exp Ther 342: 376–388.

39. Liaudet L, Szabo G, Szabo C (2003) Oxidative stress and regional ischemia-
reperfusion injury: the peroxynitrite-poly(ADP-ribose) polymerase connection.

Coron Artery Dis 14: 115–122.
40. Jaeschke H (2003) Molecular mechanisms of hepatic ischemia-reperfusion injury

and preconditioning. Am J Physiol Gastrointest Liver Physiol 284: G15–26.

41. Karakus E, Halici Z, Albayrak A, Bayir Y, Aydin A, et al. (2012) Beneficial

Pharmacological Effects of Levosimendan on Antioxidant Status of Acute

Inflammation Induced in Paw of Rat: Involvement in Inflammatory Mediators.

Basic Clin Pharmacol Toxicol.

42. Massip-Salcedo M, Casillas-Ramirez A, Franco-Gou R, Bartrons R, Ben

Mosbah I, et al. (2006) Heat shock proteins and mitogen-activated protein

kinases in steatotic livers undergoing ischemia-reperfusion: some answers.

Am J Pathol 168: 1474–1485.

43. Kume M, Yamamoto Y, Saad S, Gomi T, Kimoto S, et al. (1996) Ischemic

preconditioning of the liver in rats: implications of heat shock protein induction

to increase tolerance of ischemia-reperfusion injury. J Lab Clin Med 128: 251–

258.

44. Grossini E, Molinari C, Caimmi PP, Uberti F, Vacca G (2009) Levosimendan

induces NO production through p38 MAPK, ERK and Akt in porcine coronary

endothelial cells: role for mitochondrial K(ATP) channel. Br J Pharmacol 156:

250–261.

45. du Toit EF, Genis A, Opie LH, Pollesello P, Lochner A (2008) A role for the

RISK pathway and K(ATP) channels in pre- and post-conditioning induced by

levosimendan in the isolated guinea pig heart. Br J Pharmacol 154: 41–50.

46. Das B, Sarkar C (2007) Pharmacological preconditioning by levosimendan is

mediated by inducible nitric oxide synthase and mitochondrial KATP channel

activation in the in vivo anesthetized rabbit heart model. Vascul Pharmacol 47:

248–256.

47. Lilleberg J, Laine M, Palkama T, Kivikko M, Pohjanjousi P, et al. (2007)

Duration of the haemodynamic action of a 24-h infusion of levosimendan in

patients with congestive heart failure. Eur J Heart Fail 9: 75–82.

Levosimendan against Liver IR Injury

PLOS ONE | www.plosone.org 10 September 2013 | Volume 8 | Issue 9 | e73758


