1,094 research outputs found

    Simulation of Harmonic Oscillators on the Lattice

    Full text link
    [EN] This work deals with the simulation of a two¿dimensional ideal lattice having simple tetragonal geometry. The harmonic character of the oscillators give rise to a system of second¿order linear differential equations, which can be recast into matrix form. The explicit solutions which govern the dynamics of this system can be expressed in terms of matrix trigonometric functions. For the derivation we employ the Lagrangian formalism to determine the correct solutions, which extremize the underlying action of the system. In the numerical evaluation we develop diverse state¿of¿the¿art algorithms which efficiently tackle equations with matrix sine and cosine functions. For this purpose, we introduce two special series related to trigonometric functions. They provide approximate solutions of the system through a suitable combination. For the final computation an algorithm based on Taylor expansion with forward and backward error analysis for computing those series had to be devised. We also implement several MATLAB programs which simulate and visualize the two¿dimensional lattice and check its energy conservation.This work has been supported by the Spanish Ministerio de Economia y Competitividad, the European Regional Development Fund (ERDF) under grant TIN2017-89314-P, and the Programa de Apoyo a la Investigacion y Desarrollo 2018 (PAID-06-18) of the Universitat Politecnica de Valencia under grant SP20180016.Tung, MM.; Ibåñez Gonzålez, JJ.; Defez Candel, E.; Sastre, J. (2020). Simulation of Harmonic Oscillators on the Lattice. Mathematical Methods in the Applied Sciences. 43(14):8237-8252. https://doi.org/10.1002/mma.6510S823782524314Dehghan, M., & Hajarian, M. (2009). Determination of a matrix function using the divided difference method of Newton and the interpolation technique of Hermite. Journal of Computational and Applied Mathematics, 231(1), 67-81. doi:10.1016/j.cam.2009.01.021Dehghan, M., & Hajarian, M. (2010). Computing matrix functions using mixed interpolation methods. Mathematical and Computer Modelling, 52(5-6), 826-836. doi:10.1016/j.mcm.2010.05.013Kazem, S., & Dehghan, M. (2017). Application of finite difference method of lines on the heat equation. Numerical Methods for Partial Differential Equations, 34(2), 626-660. doi:10.1002/num.22218Kazem, S., & Dehghan, M. (2018). Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (MOL). Engineering with Computers, 35(1), 229-241. doi:10.1007/s00366-018-0595-5Paterson, M. S., & Stockmeyer, L. J. (1973). On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials. SIAM Journal on Computing, 2(1), 60-66. doi:10.1137/0202007Sastre, J., Ibåñez, J., Defez, E., & Ruiz, P. (2011). Efficient orthogonal matrix polynomial based method for computing matrix exponential. Applied Mathematics and Computation, 217(14), 6451-6463. doi:10.1016/j.amc.2011.01.004Higham, N. J. (2008). Functions of Matrices. doi:10.1137/1.9780898717778Sastre, J., Ibåñez, J., Defez, E., & Ruiz, P. (2011). Accurate matrix exponential computation to solve coupled differential models in engineering. Mathematical and Computer Modelling, 54(7-8), 1835-1840. doi:10.1016/j.mcm.2010.12.049Serbin, S. M., & Blalock, S. A. (1980). An Algorithm for Computing the Matrix Cosine. SIAM Journal on Scientific and Statistical Computing, 1(2), 198-204. doi:10.1137/0901013Ruiz, P., Sastre, J., Ibåñez, J., & Defez, E. (2016). High performance computing of the matrix exponential. Journal of Computational and Applied Mathematics, 291, 370-379. doi:10.1016/j.cam.2015.04.001Higham, N. J. (1988). FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation. ACM Transactions on Mathematical Software, 14(4), 381-396. doi:10.1145/50063.21438

    Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory

    Get PDF
    Data from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The analysis was based on a search for gamma-rays from the de-excitation of the residual nucleus that would result from the disappearance of either a proton or neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90% confidence for either neutron or proton decay modes. This is about an order of magnitude more stringent than previous constraints on invisible proton decay modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of 2) Submitted to Physical Review Letter

    A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo

    Get PDF
    Whole-cell catalysts for non-natural chemical reactions will open new routes to sustainable production of chemicals. We designed a cytochrome 'P411' with unique serine-heme ligation that catalyzes efficient and selective olefin cyclopropanation in intact Escherichia coli cells. The mutation C400S in cytochrome P450_(BM3) gives a signature ferrous CO Soret peak at 411 nm, abolishes monooxygenation activity, raises the resting-state FeIII-to-FeII reduction potential and substantially improves NAD(P)H-driven activity

    Histamine H4 receptor antagonism diminishes existing airway inflammation and dysfunction via modulation of Th2 cytokines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Airway remodeling and dysfunction are characteristic features of asthma thought to be caused by aberrant production of Th2 cytokines. Histamine H<sub>4 </sub>receptor (H<sub>4</sub>R) perturbation has previously been shown to modify acute inflammation and Th2 cytokine production in a murine model of asthma. We examined the ability of H<sub>4</sub>R antagonists to therapeutically modify the effects of Th2 cytokine production such as goblet cell hyperplasia (GCH), and collagen deposition in a sub-chronic model of asthma. In addition, effects on Th2 mediated lung dysfunction were also determined.</p> <p>Methods</p> <p>Mice were sensitized to ovalbumin (OVA) followed by repeated airway challenge with OVA. After inflammation was established mice were dosed with the H<sub>4</sub>R antagonist, JNJ 7777120, or anti-IL-13 antibody for comparison. Airway hyperreactivity (AHR) was measured, lungs lavaged and tissues collected for analysis.</p> <p>Results</p> <p>Therapeutic H<sub>4</sub>R antagonism inhibited T cell infiltration in to the lung and decreased Th2 cytokines IL-13 and IL-5. IL-13 dependent remodeling parameters such as GCH and lung collagen were reduced. Intervention with H<sub>4</sub>R antagonist also improved measures of central and peripheral airway dysfunction.</p> <p>Conclusions</p> <p>These data demonstrate that therapeutic H<sub>4</sub>R antagonism can significantly ameliorate allergen induced, Th2 cytokine driven pathologies such as lung remodeling and airway dysfunction. The ability of H<sub>4</sub>R antagonists to affect these key manifestations of asthma suggests their potential as novel human therapeutics.</p

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore