2,714 research outputs found

    Matched sizes of activating and inhibitory receptor/ligand pairs are required for optimal signal integration by human Natural Killer cells

    Get PDF
    It has been suggested that receptor-ligand complexes segregate or co-localise within immune synapses according to their size, and this is important for receptor signaling. Here, we set out to test the importance of receptor-ligand complex dimensions for immune surveillance of target cells by human Natural Killer (NK) cells. NK cell activation is regulated by integrating signals from activating receptors, such as NKG2D, and inhibitory receptors, such as KIR2DL1. Elongating the NKG2D ligand MICA reduced its ability to trigger NK cell activation. Conversely, elongation of KIR2DL1 ligand HLA-C reduced its ability to inhibit NK cells. Whereas normal-sized HLA-C was most effective at inhibiting activation by normal-length MICA, only elongated HLA-C could inhibit activation by elongated MICA. Moreover, HLA-C and MICA that were matched in size co-localised, whereas HLA-C and MICA that were different in size were segregated. These results demonstrate that receptor-ligand dimensions are important in NK cell recognition, and suggest that optimal integration of activating and inhibitory receptor signals requires the receptor-ligand complexes to have similar dimensions

    Why can pulmonary vein stenoses created by radiofrequency catheter ablation worsen during and after follow-up ? A potential explanation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiofrequency catheter ablation of excitation foci inside pulmonary veins (PV) generates stenoses that can become quite severe during or after the follow-up period. Since severe PV stenoses have most often disastrous consequences, it would be important to know the underlying mechanism of this temporal evolution. The present study proposes a potential explanation based on mechanical considerations.</p> <p>Methods</p> <p>we have used a mathematical-physical model to examine the cyclic increase in axial wall stress induced in the proximal (= upstream), non-stenosed segment of a stenosed pulmonary vein during the forward flow phases. In a representative example, the value of this increase at peak flow was calculated for diameter stenoses (DS) ranging from 1 to 99%.</p> <p>Results</p> <p>The increase becomes appreciable at a DS of roughly 30% and rise then strongly with further increasing DS value. At high DS values (e.g. > 90%) the increase is approximately twice the value of the axial stress present in the PV during the zero-flow phase.</p> <p>Conclusion</p> <p>Since abnormal wall stresses are known to induce damages and abnormal biological processes (e.g., endothelium tears, elastic membrane fragmentations, matrix secretion, myofibroblast generation, etc) in the vessel wall, it seems plausible that the supplementary axial stress experienced cyclically by the stenotic and the proximal segments of the PV is responsible for the often observed progressive reduction of the vessel lumen after healing of the ablation injury. In the light of this model, the only potentially effective therapy in these cases would be to reduce the DS as strongly as possible. This implies most probably stenting or surgery.</p

    Cholesterol Influences Voltage-Gated Calcium Channels and BK-Type Potassium Channels in Auditory Hair Cells

    Get PDF
    The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitabilityare unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD) on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs) are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type) potassiumcurrent by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (∼30%), ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology

    3D global and regional patterns of human fetal subplate growth determined in utero

    Get PDF
    The waiting period of subplate evolution is a critical phase for the proper formation of neural connections in the brain. During this time, which corresponds to 15 to 24 postconceptual weeks (PCW) in the human fetus, thalamocortical and cortico-cortical afferents wait in and are in part guided by molecules embedded in the extracellular matrix of the subplate. Recent advances in fetal MRI techniques now allow us to study the developing brain anatomy in 3D from in utero imaging. We describe a reliable segmentation protocol to delineate the boundaries of the subplate from T2-W MRI. The reliability of the protocol was evaluated in terms of intra-rater reproducibility on a subset of the subjects. We also present the first 3D quantitative analyses of temporal changes in subplate volume, thickness, and contrast from 18 to 24 PCW. Our analysis shows that firstly, global subplate volume increases in proportion with the supratentorial volume; the subplate remained approximately one-third of supratentorial volume. Secondly, we found both global and regional growth in subplate thickness and a linear increase in the median and maximum subplate thickness through the waiting period. Furthermore, we found that posterior regions—specifically the occipital pole, ventral occipito-temporal region, and planum temporale—of the developing brain underwent the most statistically significant increases in subplate thickness. During this period, the thickest region was the developing somatosensory/motor cortex. The subplate growth patterns reported here may be used as a baseline for comparison to abnormal fetal brain development

    Malaria vector control practices in an irrigated rice agro-ecosystem in central Kenya and implications for malaria control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria transmission in most agricultural ecosystems is complex and hence the need for developing a holistic malaria control strategy with adequate consideration of socio-economic factors driving transmission at community level. A cross-sectional household survey was conducted in an irrigated ecosystem with the aim of investigating vector control practices applied and factors affecting their application both at household and community level.</p> <p>Methods</p> <p>Four villages representing the socio-economic, demographic and geographical diversity within the study area were purposefully selected. A total of 400 households were randomly sampled from the four study villages. Both semi-structured questionnaires and focus group discussions were used to gather both qualitative and quantitative data.</p> <p>Results</p> <p>The results showed that malaria was perceived to be a major public health problem in the area and the role of the vector <it>Anopheles </it>mosquitoes in malaria transmission was generally recognized. More than 80% of respondents were aware of the major breeding sites of the vector. Reported personal protection methods applied to prevent mosquito bites included; use of treated bed nets (57%), untreated bed nets (35%), insecticide coils (21%), traditional methods such as burning of cow dung (8%), insecticide sprays (6%), and use of skin repellents (2%). However, 39% of respondents could not apply some of the known vector control methods due to unaffordability (50.5%), side effects (19.9%), perceived lack of effectiveness (16%), and lack of time to apply (2.6%). Lack of time was the main reason (56.3%) reported for non-application of environmental management practices, such as draining of stagnant water (77%) and clearing of vegetations along water canals (67%).</p> <p>Conclusion</p> <p>The study provides relevant information necessary for the management, prevention and control of malaria in irrigated agro-ecosystems, where vectors of malaria are abundant and disease transmission is stable.</p

    Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV

    Get PDF
    The inclusive cross section for production of isolated photons has been measured in \pbarp collisions at s=630\sqrt{s} = 630 GeV with the \D0 detector at the Fermilab Tevatron Collider. The photons span a transverse energy (ETE_T) range from 7-49 GeV and have pseudorapidity η<2.5|\eta| < 2.5. This measurement is combined with to previous \D0 result at s=1800\sqrt{s} = 1800 GeV to form a ratio of the cross sections. Comparison of next-to-leading order QCD with the measured cross section at 630 GeV and ratio of cross sections show satisfactory agreement in most of the ETE_T range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001

    Neogenin May Functionally Substitute for Dcc in Chicken

    Get PDF
    Dcc is the key receptor that mediates attractive responses of axonal growth cones to netrins, a family of axon guidance cues used throughout evolution. However, a Dcc homolog has not yet been identified in the chicken genome, raising the possibility that Dcc is not present in avians. Here we show that the closely related family member neogenin may functionally substitute for Dcc in the developing chicken spinal cord. The expression pattern of chicken neogenin in the developing spinal cord is a composite of the distribution patterns of both rodent Dcc and neogenin. Moreover, whereas the loss of mouse neogenin has no effect on the trajectory of commissural axons, removing chicken neogenin by RNA interference results in a phenotype similar to the functional inactivation of Dcc in mouse. Taken together, these data suggest that the chick neogenin is functionally equivalent to rodent Dcc

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore